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ABSTRACT

This is a theoretical thesis. The goal is to determine how

many signal sources exist in the medium when constrained to using

only a few samples. The need to make decisions based on only

a few samples is motivated by the slow sound propagation speed

and the time urgency to make decisions. This research treats

the problem from the point of view of classical hypothesis testing

assuming complex multivariate Gaussian random variables. This is

the small sample complex principal components analysis problem.

The critical issue is the derivation of probability density functions

of appropriate test statistics. The goal has been partially achieved.

The probability density functions for several important dis-

tributions have been derived. In particular, these include the

distribution for the set of eigenvalues satisfying the generalized

eigenvalue problem of two complex Wishart matrices, the matrix

complex Gaussian distribution, a joint distribution needed to derive

the density for the sphericity test statistic, the density function

for the ratio of averages of disjoint sums of sequential eigenvalues

of a complex Wishart matrix, and several tests based on the ratio

of an arbitrary eigenvalue to the maximum, minimum, average, or
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sum of all the eigenvalues for a special case of the complex Wishart

matrix. This thesis includes a derivation completely in the context

of complex variables of the density function of the complex Wishart

distribution and the distribution of its eigenvalues. It also includes

a few minor results regarding zonal polynomials of complex matrix

argument.

A comprehensive development of the tools of statistics of

complex variables for engineers and physicists is provided. This

includes a study of complex matrix derivatives, changes of complex

variables, and properties of the characteristic function of a com-

plex multivariate random variable. A derivation of the complex

Hotelling's T2 test statistic and distribution useful for tests on

means is given. A tutorial on Kiefer and Wolfowitz' application of

the Lebesgue-Radon-Nikodym theorem for the estimation approach

is provided.
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Chapter 1

INTRODUCTION

1.1 Characterization of Thesis

1.1.1 Focus of Thesis

The focus of this thesis is the development of tools and construction of meth-

ods for determining the number of point sources present in a measured acoustic

field. There are several good approaches to this problem. The approach ex-

amined in this thesis is that of Principal Components Analysis for the small

sample case of signals and noise arising from the matrix complex normal prob-

ability distribution. This distributional assumption is a typical starting point

for problems in array processing. The forms of test statistics applicable to this

problem have been known by many people for a long time. The hard part of

the problem is obtaining the sampling distributions of those statistics. The

distributions for test statistics have been developed in this thesis for some of

the simple (and, hence, unrealistic) cases. Although there remains much work

to be done, this thesis does develop significant tools required for the further

study of this problem and it partially develops the derivations of the ultimately

desired distributions.
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1.1.2 Discipline Home of Thesis

A major criticism levied against this thesis is the notion that it is not a thesis in

acoustics. It is true that most of the work produced in the course of this study

does not have the flavor most acousticians would recognize, yet it was originally

(and still is) solidly motivated by a problem in acoustics. Because the terminal

goal of this research has not been reached, it is not yet possible to demonstrate

its application via experiment or simulation to acoustics. However, because

of the research accomplishments of this thesis, the day when that might be

possible is now closer (in event time measure).

The bulk content of this thesis is multivariate statistics of complex vari-

ables. Statisticians generally would not claim this work because of the exten-

sive use of complex variables. The most difficult contributions of this thesis

are grounded in topological group representation theory, yet mathematicians

would not generally claim this work because it is too applied. Nevertheless, the

key observation in this thesis (the justification of Gross and Richards' splitting

theorem for zonal polynomials of two complex Hermitian matrix arguments,

and its application to the derivation of the joint probability density of eigen-

values of an Hermitian Wishart matrix) requires such a treatment to establish

it. It is appropriate to remark here that the most widely useful results of this

thesis, which include the systematic redaction of the linear algebra, differential

and integral calculus, and statistics of complex variables, is accessible to most
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engineering juniors.

Although signal processing most often finds its academic home in electrical

engineering, electrical engineers most often deal with applications which make

use of large sample sizes. I am interested in the small sample size case. Further,

the use of the exterior product in developing Jacobians for changes of complex

variables is uncommon among electrical engineers. Signal processing is most

properly classified as an information science, and is quite independent of the

use of electrons to implement its ideas. Another difference is that the speed of

acoustic signals is significantly slower than for the case of electromagnetically

propagated signals. So, this thesis must reside in an interdisciplinary home.

With this major impediment set aside, let us continue with the description of

the background and content of the subject matter.

1.1.3 What This Thesis is Not

This thesis is not about:

"* devising new signal processing structures

"* faster or more robust algorithms

"* inventing new statistical tests

"* comparing old tests

"* finding asymptotic distributions of test statistics
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* examining Cramer-Rao bounds for estimators

* assessing estimator consistency

9 simulating results

1.2 Order Estimation

This thesis concentrates on the problem of determining the number of signif-

icant sources present at an array in a noisy environment. This is known as

system order determination or system identification in other contexts. More

correctly, the question being investigated is the number of arrival paths con-

taining signals that can be distinguished from noise. Often, the question is

asked for a fixed frequency.

Several studies in signal processing assume that system order is given or can

be obtained. One important work is the introduction of the MUltiple Signal

Classification (MUSIC) algorithm by Schmidt [238]. He requires knowledge

of the number of eigenvalues of the received data matrix that are associated

with noise. Another study that requires knowledge of the number of received

signals is the thesis on maximum likelihood estimation by Mirkin [183] (p.

37). In Tague's study [2631 (p. 140) of stochastic operators and their ma-

trix representations applied to estimator-correlator processors, he examined

the relationship between system identification and receiver performance. He
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showed that perfect identification is not required in order to improve processor

gain, and that even poor identification conducted at a low signal-to-noise ratio

(SNR) results in some improvement. The approach of this thesis relies on the

testing of eigenvalues.

1.3 Eigensolutions

The number of arrival paths is related to the array element output covariance

matrix eigenvalues and is independent of array geometry. I assume in this

thesis that the array is unstructured. The eigenvectors of this covariance

matrix is a function of array geometry and the directions of arrival.

Morrison [186] has a wonderful discussion on the geometric interpretation

of eigenvalues and eigenvectors in his discussion on principal components. The

eigenvectors define a coordinate system. The eigenvector associated with the

largest eigenvalue defines that linear combination of data that produces the

maximum variance in the data. The eigenvector associated with the second

largest eigenvalue defines that linear combination of data that produces maxi-

mum variance subject to the restriction that the second eigenvector is orthog-

onal to the first eigenvector. Successive axes are defined in the same way. The

sample eigenvalues are the variance estimates of the linear combinations of

the data defined by the associated eigenvectors. When the eigenvectors are

normalized to unit length, they can be thought of as direction cosines which
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specify the rotation from the original response axes of the data to the axes

given by the set of eigenvectors.

To understand the effect of eigenvalue separation on the accuracy of di-

rections of arrival computed from associated eigenvectors, consider the eigen-

vectors as being axes of an n-dimensional ellipsoid. Think of the square root

of the eigenvalues (the singular values) as being the lengths of the semi-axes.

Now, visualize an ellipsoidal shell conforming to this geometry. The sharp-

ness of curvature of the ellipsoidal shell can be thought of as a measure of the

stability of the direction-of-arrival estimate or bearing accuracy.

If all the eigenvalues are equal, you have a ball! Hence, a test for equality

of eigenvalues is often called a sphericity test. There are an infinite number

of possible 3-dimensional orthogonal coordinate systems that you can fit to

a 3-dimensional sphere. Assuming that the origin of all coordinate systems

is at the center of this sphere, the first choice is an arbitrary point on the

sphere, like the North Pole. The number of choices is uncountable. This

fixes the first coordinate (eigenvector). The second coordinate is constrained

to be orthogonal to the first, which places the second choice for a point on

the sphere's equator. Even here the number of choices is uncountable. In

general, for an n-dimensional sphere, the number of axes for which there are

uncountable choices of orientations is n-i.

There will be as many non-zero eigenvalues as there are sources when
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there are more sensors than sources and there is no noise. If there is noise

then all the eigenvalues will be nonzero. The sensor outputs are random

variables and hence the eigenvalues and eigenvectors of the sample covariance

matrix are random variables. When the signal-to-noise ratio is large, the large

eigenvalues are associated with the signal plus noise and the small eigenvalues

are associated with the noise. When the signal-to-noise ratio is small, the

determination of the exact number of sources is not as easy. The primary

question of this thesis is as follows.

Given two eigenvalues (or groups of eigenvalues) from a noisy process,

is the difference between them due to mere chance,

or is it more likely due to some underlying real cause?

The sensitivity of the accuracy of eigenvectors as a function of (a) eigen-

value separation, (b) underlying distribution determined by the a-mixing of

two Gaussian distributions, and (c) covariance estimation method (conven-

tional sample covariance estimation, rank correlation, weighted M-estimate)

was the subject of a simulation study by Moghaddamjoo [184]. The concept of

a-mixing refers to the convex sum of two or more probability distributions. For

the simple two-distribution case, one of the distributions can be called a con-

taminating distribution. Conventional estimation was best when there was no

a-mixing. The rank-correlation (robust) method was best when the contami-

nation factor was 0.1. The weighted M-estimate never was best. These results
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were observed at all signal-to-noise ratios. As expected from the geometri-

cal interpretation, when the signal-related eigenvalues were not well separated

from each other or from noise, then the estimates of the related eigenvectors

were very different from their true values. As long as good eigenvalue separa-

tion existed, then the space spanned by the estimated signal eigenvectors was

almost the same as the true signal space. When a signal related eigenvalue

was close to the noise eigenvalues, there was significant mixing between its cor-

responding eigenvector and noise related eigenvectors. The only remedy was

to increase the overall array signal-to-noise ratio by increasing the number of

sensors and filtering the noise as much as possible.

The problem reduces to looking at the sample eigenvalues to test if the

corresponding population eigenvalues are the same or significantly different.

More generally, the hypothesis I would like to test is H :cA 2ci = cA 2 c2

versus the alternative A : cTA 2 c, > CTA 2c 2 where cl and c2 are column vectors

of real numbers that specifies linear combinations of eigenvalues contained in

the diagonal matrix A2 . This is equivalent to a test proposed by Krishnaiah

and Lee [153] without providing an expression for the distribution involved.
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1.4 Major Assumptions and Rationale for Ap-

proach

Since an eigenvalue is the square of its related singular value, we can test

the square of the sample singular values to determine the appropriate rank of

an approximating covariance matrix for an eigensystem processor [212]. This

rank is known as the system order. Once known, beams can be formed to

maximize the signal-to-noise ratio in the desired look-directions by cancelling

out the interfering point sources using methods described in Monzingo and

Miller [1851. The mathematics for optimal processing has been worked out

when the system order is known. Progress in the development of statistical

estimation techniques that apply to this problem is still being made. For

example, see the fascinating thesis by Kundu [158]. The hypothesis testing

approach has received little attention.

The order estimation problem can be approached from a strategy of estima-

tion or a strategy of hypothesis testing. If you choose an estimation strategy,

you must know how good your answer is. A confidence level (1 - a) must

be chosen to form a confidence interval. If you choose hypothesis testing, the

size a of the test must be chosen to construct the critical value against which
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the test statistic is compared. In both strategies the choice of a is subjective,

whether the choice is made directly or indirectly, such as via cost and utility

functions. Regardless of your strategy, you can construct a better an esti-

mator or hypothesis test if you know more about the distributions involved.

To even assume that data is drawn from an exponential family distribution is

subjective, even when the hypothesis of such an event is not rejected by test-

ing. Explicitly identified subjectivity is not necessarily bad. It enables us to

build tractable models and efficiently achieve reasonable results. The charge

of "subjectivity" lodged against hypothesis testing by proponents of estima-

tion is an invalid defense of estimation and an invalid claim of advantage of

estimation over testing. Estimation and testing both require a choice of a

for the results to be meaningful and thus are based on the same underlying

theory. Both are worthy candidates for investigation and development. The

advantage of estimation over hypothesis testing is that less work is usually

involved in obtaining an answer. The usefulness of the answer, however, can

only be assessed by assuming a value for a and applying distributional theory.

One characteristic of acoustic signal processing that distinguishes it from

processing electromagnetic signals is the comparatively slow propagation speed

of acoustic signals. In radar, if you need more independent samples to satisfy

applicability of the central limit theorem, you increase your pulse repetition

rate. In acoustics, the speed at which data is propagated is slow compared to
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the speed of light. This means that decisions must be based on a restricted

number of independent samples available per unit time. This drives interest

to the small sample case. The desirability of working with a small sample size

distinguishes this problem in acoustics from one in electrical engineering which

is usually satisfied by the large sample case.

The desire to work with corr-,lex r, dom variables distinguishes the work

in this thesis from work that migi, usually be found in statistics. Bandpass

acoustic data is naturally represented with complex numbers. The primary

interest in using complex variables in the development of theory is the natural

and convenient representation of the time-dependency of physical variables by

using the form exp(iwt). By applying the Hilbert transform to the array ele-

ment data, the resulting data stream can be represented as complex numbers.

Application to actual data allows us to efficiently do phase comparisons and

computations. A very nice discussion in the sonar context is in Ziomek's 1985

book [299] (pp. 176-189). Let our real data stream be the variable x(t) and

let the Hilbert transform of x(t) be y(t). The usual notation for the Hilbert

transform of x(t) is i(t). You can think of the Hilbert transform as being a

quadrature filter having x(t) as its input. Then our complex data stream is

formed by z(t) = x(t) + iy(t).

A common assumption for purposes of mathematical simplicity when first

developing theory for an application in signal processing is that the process
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is stationary. Application to array processing leads to consideration of com-

plex multivariate distributions. The assumption of Gaussian white noise is a

traditional starting point in signal processing studies because it simplifies the

mathematics involved and it is not a bad model for a wide range of situations.

Wooding [293] is often cited as the beginning point for the work with com-

plex normal random variables because he connected it with application to the

envelope of a random noise signal. He considered the form of the covariance

matrix and density function of the random variable z.(t) = x,(t)+iy (t) where

x, and y, are independent normal random variables. Thus, for the complex

scalar z•(t), the real and imaginary parts, xj(t) and yn(t), are uncorrelated.

He showed that the covariance matrix for the real and imaginary parts of two

such complex normal random variables, zm and z,, satisfied the following con-

ditions: E {ymy,} = E {x,,mx, and E {xmy,} = -E{xny,}. He derived the

density function and the characteristic function of the vector complex nor-

mal distribution for the zero mean case. Goodman [921 (p. 173), a pioneer

in the study of complex Gaussian statistics, remarked that many stationary

non-Gaussian processes become nearly Gaussian when "passed through" suf-

ficiently narrowband filters. Bendat and Piersol [39] provide a cautionary

remark that physical phenomena and measured data ultimately are limited by

nonlinear restraints in the positive and negative direction, so no random data

can be truly Gaussian. Therefore the Gaussian distribution is not appropriate
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for looking at extreme events, which are events located in the tails of the dis-

tribution. This is precisely where our interest lies for the detection problem,

and I will conveniently ignore their wise cautionary remark under the rubric

that one should understand what is easy before trying to understand what is

hard. Attention is focused on the complex multivariate normal and related

distributions. The complex Wishart distribution is the natural distribution for

examining the variability of a sample spectral density matrix.

This thesis focuses on hypothesis testing strategies.

The problem is examined in the context of a complex variable small sample

principal components analysis problem.

1.5 Organization of Thesis

This thesis is organized as follows. The chapters contain the materials which

I judged are mathematically accessible to most engineers and are most di-

rectly related to the hypothesis testing question. The appendices contain the

supporting mathematical background or results which I judged not commonly

accessible to most engineers.

Chapter 2 provides a mathematical statement of the problem as one of

a small sample complex principal components test. Chapter 3 reviews other

applications that can benefit from eigenvalue tests. Chapter 4 identifies ap-
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proaches to the order estimation problem different than the one taken in this

thesis. It also includes an exposition of Kiefer and Wolfowitz [140] generaliza-

tions of maximum likelihood estimators. This discussion provides an abstract

setting within which the process of model order identification and estimation

can be viewed as part of the same problem of selecting one or a family of prob-

ability measures from among candidates. Chapter 5 reviews previous work on

order determination by hypothesis testing. Chapter 6 specifies some statistical

tests of interest. Chapter 7 contains the summary and conclusions. Chapter

8 contains recommendations for further research.

The first appendix highlights the mathematical background necessary for

this thesis. It identifies good preparatory references and gives examples that

illustrate the need for the special care and attention to details. It also outlines

the major structure of the three groups of appendices. The last appendix

identifies notation conventions and defines special symbols and functions. It

is located at the very end to make it easy to use.

The appendices are perhaps the most valuable part of this thesis. They

lay the groundwork to support many other efforts. The experienced reader

will have used many of these results, having found them in isolated literature,

or will have independently developed the results. I know of no systematic

thorough presentation of these results explicitly for the complex case. Perhaps

the closest to achieving this is the fine text by Stewart [259]. Consequently, I
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have taken the liberty of developing results related to my general theme even

when they do not follow the very narrow line of reasoning expected in a law

court to explore the stated thesis topic. This development was a labor of love

initially patterned by Chapter 17 of the wonderful text by Arnold [31]. It

expanded to include work derived in great measure by Muirhead [187] and

Anderson [26]. These appendices are not in natural pedagogical order, but

rather are grouped by my anticipation of which material would be useful to

different kinds of readers.

Appendices A through F are accessible to most engineers and are directly

related to this thesis. If this thesis is ever read, I expect that this group

of appendices to be of the most use to other people. Those who insist on

practical results can find some in the wonderful work by Tague [264], which

is presented here with some steps that were omitted in his journal article due

to lack of space. Appendices G through J are at a more abstract level. The

most challenging contributions made in this thesis are given in equation G.10,

material related to equation G.16, and theorem 98, all contained in appendix

G. All of appendices G through J are necessary for complete understanding of

this thesis. Much of it is not new knowledge, but is included to allow engineers

to get access to the necessary mathematical background quickly. Appendices

K through P form a repository of results that are mundane, useful (for the

most part), and are not generally available elsewhere. Other than Appendices
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H.1 through H.5 and I, the appendices are results which I have recast from

real variables into the complex variables case, or are results I have not seen

elsewhere even for the real variables case (yet). The most interesting results in

this group of appendices are in appendix L, and the easy results that were fun

to produce are in appendix N. The most important of this group of appendices

is appendix M, and the most difficult to produce was appendix P.
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Chapter 2

MATHEMATICAL STATEMENT OF

PROBLEM

2.1 Introduction

In this chapter, I provide a mathematical statement of the problem and test

statistics known to apply to the problem. In a later chapter, you will observe

I have also included a few other statistics applicable to the order identification

problem.

The basic mathematical problem can be stated as follows. Assume that

we have m arbitrarily oriented sensors and p sources. In particular, I am not

restricting this to a study requiring a linear array. We know m and we want

to find p. The value of m is selected with the intention that the assumption

m > p is valid. Assume the Gaussian white noise is isotropic and independent

of the signals and that the signals are mutually independent. We want the

difference between a signal at various sensors to depend only on the time

difference due to propagation between the source and the sensors. Therefore,

accept the linearized equations for small amplitude acoustics and assume that

the sensors are located in the acoustic (but not necessarily geometric) far field

of the sources. I do not require an assumption of plane wave propagation
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across the array. Those are issues related to beamformer assumptions which

are not within the scope of this thesis. The geometry is illustrated in figure

2.1.

0
Point

SourcesS
0 XW

Reference• Point

Sensor Array

Figure 2.1. Array Geometry

If the array is sampled n times, where n > m, then we get the following

matrix. Each X,(k) is a complex random variable.

X1(1) X 2 (1) ... XM(1)

X,(2) X2(2) ... X.,(2)
x =(2.1)

X,(n) X 2(n) ... X,,(n) ,,,

Regardless origin of the elements of matrix X, we can determine
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the rank of X by determining the number of nonzero singular values of X.

Alternately, we can determine the rank of X by examining the number of

nonzero eigenvalues of either XXH or XHX. Independence of the samples is

not required for the singular values to identify the rank of X. When I finally

derive distributional results I will require that the samples be independent to

simplify the mathematics. This will allow the assertion that the covariance

matrix is a complex Wishart matrix. However, a future development should

deal with X without the sample independence constraint, perhaps via studying

the singular values.

In absence of noise, the rank of this matrix is the number of sources. I

want to find a matrix A of lowest rank that is a best approximation of X in

some sense. Then v= rank(A) is the answer. The random variable v is our

approximation to p. I want to find out what is v. Suppose that the data in

matrix X includes noise. If some matrix Y consists of only the noise data,

then we can examine the rank of Z = X - Y. We may examine the rank of

X or Z directly by looking at their singular values obtained from a Singular

Value Decomposition (SVD), or by looking at their eigenvalues obtained from

an Eigenvalue Decomposition (EVD) of XHX or ZHZ. Eaton and Perlman

[73] showed that XHX is of full column rank m with probability 1. Okamoto

[197] showed that the eigenvalues of such a matrix are all distinct. Let the

SVD of X be given by Xn,,,, = ET=I 1iPiQf', and let the singular values of
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X be ordered according to 11 > 12 > ... > 1m. Let L be the rectangular

matrix containing the diagonal matrix of the singular values {li} in its upper

left corner. The norm

rain IlX - A l=l+ +.. + 12M
p(A)=v<_m

is attained when A = F,= liPiQ$'. The {Pi} are the left singular vectors, and

they satisfy pHp = I,. The {Q2} are the right singular vectors, and they

satisfy QHQ = I,,,. The {l}!i= are the non-zero eigenvalues of both XHX

and XXH. Let B = XHX. Define Bj = E'j+l l QiQ$'. The matrix Bj is an

approximation of the matrix B formed with the smallest (m - j) eigenvalues

and corresponding eigenvectors of matrix B. We will see these again in a

moment.

I essentially want to perform a test for sphericity on the smallest m - v

eigenvalues. We seek to determine if they are the same for practical purposes,

or if at least one of them is significantly different from the others. Proceed in a

sequential manner with different values of j. We want to find out what's v. The

order in which you test is your test strategy. The order you choose depends on

your confidence in which direction of testing, from small to large eigenvalues or

large to small eigenvalues, will result in a successful identification of the rank

of the non-noise contribution to X with the least amount of computational

work.

Suppose you have no signals. With probability 1, no two sample eigen-
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values will be the same even though there is only one underlying population

eigenvalue. The smallest sample eigenvalue will underestimate the common

population eigenvalue, and the largest sample eigenvalue from this noise-only

matrix will overestimate the population eigenvalue. This means that if you

want to estimate the smallest eigenvalue, you should use an average of the

sample eigenvalues you have classified as belonging to the same population

eigenvalue rather than using the smallest sample eigenvalue by itself. Doing

the latter would bias your estimate. The testing situation may be different

because the distribution of the sample eigenvalues accounts for this problem

(and in fact, causes the problem). When testing a new sample eigenvalue for

inclusion in a set associated with underlying equal population eigenvalues, you

should include in your test as many sample eigenvalues as you have already

classified as being the same population eigenvalue.

2.2 Specific Test Statistics

If you have an array with many sensors and an environment of only a few

sources, then consider sequential tests of sphericity beginning with the full

matrix. The usual test for sphericity uses the maximum likelihood ratio test

statistic developed by Anderson [24]. Anderson determined the large sample
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(asymptotic) distribution of T1 .

T, = nn i=,,+l (2.2)l-I J ]

A form for which a density function might be easier to derive is T2 . This is

essentially equations (14) and (23) of Wax, Shan, and Kailath [279].

T2 = r=+ I- (2.3)

For the special case of m - v= 2, the density function of T2 is given as

equation 6.17, and the cumulative distribution function is given as equation

6.18. This is the same as the statistic u that Muirhead [187] uses in the case

of real variables. We will see that equation 6.15 is very similar to equation 2.3.

Another statistic to consider is T3 or its inverse. This is suggested by C.

R. Rao 1212] (equations 3.10, 3.11, and 17.1).

T3 = 1? +.-.- - tr(B) (2.4)

The density of T3 can be obtained by theorem 8. The statistic L has the

interpretation as being the fraction of the total variance explained by those

eigenvalues attributed to being influenced by the signals. Alternatively, you

could test that the last few eigenvalues explain only a small fraction of the

data as in T4.

T4 = tr(B) (2.5)
S+... +
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The density of TI4 can be obtained by theorem 8. As a point of convenience,

note that tr(B) = tr(XHX) = tr(XXH). Another concept that is useful is

to test if the largest p eigenvalues are significantly different than the smallest

m - v eigenvalues as in Ts.

S+.. +(2.6)T 1= 2v+ ' + 12m

The density of T5 can be obtained by theorem 8.

In a real ocean environment with multipath propagation, you may want to

distinguish the direct (refracted) path from other paths using the assumption

that the signal-to-noise ratio along the direct path is greater than by other

paths. This is a bit simplistic, and a more intelligent model could be made.

Then you might want several partitions of {l?}n to test on. To really confuse

the issue, you could go back to the sample covariance matrix and perform

tests on selected entries in that matrix to compare elements to each other or

to known constants.

Let the population eigenvalues be denoted by A2 = diag( 2,... , A•). Let

a column vector of real constants c E Rm be used to construct linear combi-

nations of the population and sample eigenvalues. Let ej be a column vector

in R- with all zeros except for a 1 in the jth position. We will construct our

choices of various vectors c using sums of selected ej. Construct a general test
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statistic T6.

T6 = (2.7)

n 2 A2C2)

Let the distribution of this test statistic be dependent on n. Denote the

distribution function by f06 when c{'A 2c1 = 4A 2c2. The density of T6 can be

obtained by theorem 8.

Now, suppose that we want to test if there are exactly v sources. As-

sume that it is already established that the last m - v eigenvalues are iden-

tical. If A~ A then A E A= This leads to c, = e, and

C2 E e. For this selection of cl and c2 we have met the goalj = v 't - V m'd m Z- V J

of c,'A2c1 - c2 A2c2. If c3 - F, ej we get the relationship c1HA 2c1  -
j=V+1

c-#3 A2c3 = ct2A 2c2 when 2 = A2+ 1 . When this is true, the test statis-

tic becomes T7 .

T7 = (m - v)cj'L 2c, (2.8)
c3 L 2c 3

The density of T7 can be obtained by theorem 8. The null hypothesis is H0

(m - v)c( A2C, < c•3A 2c3. Written out in terms of the individual population

eigenvalues, this is Ho : • < •+ = <'" = A2,. The alternate hypothesis is

given by H. : A2 > A2+1  A - A2. If T7 < fo7(1-•), then conclude to not

reject Ho; otherwise reject Ho and choose Ha.

Another desirable question is to ask if there are no more than v sources.

Suppose you have concluded that there are exactly v sources. Then the best

estimator of X is given by X[,l = E liPiQi'". What is left over should be due
i---1
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to noise alone and should therefore be spherical. Let Y = E liPiQt'. The
i~v+l

statistic for testing the sphericity of yny is given by TR.

T8 = nIn , (2.9)

Let fo8(m-v, n) be the distribution of the test statistic T8 when A2 1  2

2 2_

The null hypothesis is H0 : A•+ .... The alternate hypothesis is Ha:

one or more of the A? are different from the rest, or equivalently, not all the A?

are equal. If T8 _< f0s8(-I,)(m - v, n) then do not reject H0. Otherwise, reject

IIo and conclude Ha.

Suppose that the noise covariance matrix R is known. Then we want to

find the rank of the matrix W = B - R. There is a problem with a direct

approach when all the eigenvalues of W are zero in that such distribution

density functions become undefined. However, this is precisely what we want to

look at. Alternatively, let the eigenvalue decomposition of W be W = QL 2QH.

Then, let the eigenvalue decomposition of R be given by VD 2VH. We can test

if the last m - v eigenvalues of B equal the last m - v eigenvalues of R. Define

the test statistic T9 .

9 c LD2c, (2.10)

The density of T9 can be obtained by theorem 8. Let fog(n) be the distribution

of T9 when cj'A 2c, = cHDc, is true. Let D2 = diag(d,... ,dx2,). Then the
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null hypothesis is H0 : A2 = d2 and the alternate hypothesis is Ha : 2 -4 d2.

If folg_.9)(n) <T 9 < fo 9tp)(n) then do not reject H0 , otherwise conclude that

H0 is rejected and therefore chose Ha. When Ho is true, B is not of rank v,

and there are not v significant sources. When H0 is false, we reject H0 , and

by default choose Ha, concluding that there are v significant sources.

We can not use the sphericity test on W because all the tested eigenvalues

are zero under the null hypothesis, and the density function of the test dis-

tribution possibly will not exist. We can test that there arc no more than v

sources by comparing the sums of eigenvalues of B and the sums of eigenval-

ues of R. Assume that there are no more than v+1 sources. In practice, this

should not be a problem for the proposed test. The null hypothesis is given

by H: V+1 + -+m + d + 1 +.. - d+,, and the alternate hypothesis by
m

H, : equality does not hold. For this problem, let cl = • ei and compute

test statistic T9. If fog9(-a)(n) _< T9 then do not reject Ho, otherwise reject Ho

and conclude Ha. We are not looking at A2. If the last m - v eigenvalues of B

equal those of R, then the rank of W is less than v + 1. Therefore, the rank

of W is no more than v.

Suppose now that you do not know R, but you have an estimate of R which

we will call S. Then we want to find the rank of the matrix V = B - S. Let

the eigenvalue decomposition of V be V = QL 2 QH. You would like to know

if the last m - v + 1 eigenvalues of V are small enough to be considered zero.
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Define the test statistic T1o.

T10 -- 1i2 (2.11)
i=10

Let fro(n) be the distribution of T10 when c,'A 2 cl = 0 is true. Then the null

hypothesis is H0 : A? = 0 and the alternate hypothesis is Ha : A? # 0. If

To < fho0 -1o)(n) then do not reject H0, otherwise conclude that H0 is rejected

and therefore chose H.. When H0 is true, B is not of rank v, and there are not

v significant sources. When H0 is false, we reject Ho, and by default choose

Ha, concluding that there are at least v significant sources.

A sequential test for rank that begins with the largest eigenvalue may be

practical in systems with a large number of sensors and a few expected sources.

The idea is to test the ratio of the largest v eigenvalues to the sum of all the

eigenvalues, as given by statistic T11.

T 12 + l .+..-+ 12 1 +.. + l1(212

2 + .-. + 12 tr(B)

The density of Tnl can be obtained by theorem 8. A sphericity test could

similarly be constructed for the eigenvalues yet to be estimated, such as T12.

[-i . (tr(B) - J? 1)]

T1 2 = nIn / (2.13)

Of course, it is also possible to consider the difference between adjacent

sample eigenvalues ?- 1,2+ or the ratio I?/(/31+2) where # is some real constant
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of proportionality of interest. If you expect Ai2+ to be a variance associated

with noise and A? to be signal plus noise variance, then you may be interested

in /3 = 100.1 to correspond to a 1 dB (S + N)/N ratio, or/3 = 100-5 for a 3 dB

ratio. Similar statistics between any two sample eigenvalues of interest may

also be appropiiate, such as 1? - l• or 1/(/31ý). Values of j that may be of

special interest are 1 and p. You may want to use the average of the sample

eigenvalues a = 1 l instead of IP. All test statistics (except of the form of
i=1

T1) are heuristically based, drawing from background in regression analysis.

In this chapter, the problem has been cast as a problem in complex principal

components analysis. A number of testing situations with their commonly

known test statistics have been presented. The goal of this thesis is to develop

the density functions for these statistics We sill see some more easily derived

density functions for closely related tests presented during our search for the

densities of the stated tests. This is a problem in dimensionality reduction.
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Chapter 3

OTHER APPLICATIONS

The purpose of this chapter is to briefly review applications of system identi-

fication in which the eigenvalue based hypothesis testing approach might be

used. In addition, applications are suggested for acoustic emission analysis

and acoustical oceanography. Those are areas I am interested in and have

not seen evidence of order determination applied. Even though the abstract

problem has its own beauty, this chapter shows that it also has usefulness.

Application to acoustic emission analysis will be discussed in section 3.1 and

acoustical oceanography will be discussed in section 3.2. This section briefly

identifies a variety of other applications.

Goodman was an early pioneer in the distribution theory and application of

complex random variables. He reported that geophysicists treat simultaneous

measurements at several positions in the ocean of the height of gravity waves

generated by the wind as multivariate complex normal records [92].

Krishnaiah and Waikar [147] reported that the distributions of the inter-

mediate roots can be used for reduction of dimensionality in pattern recog-

nition problems and principal component analysis. In nuclear physics, the

distributions of any few consecutive ordered roots are useful for finding the

distributions of the spacings between the energy levels of certain complicated

systems [53][174]. Krishnaiah and Waikar referenced Wigner with regard to
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applications in physics [284][285][287]. Krishnaiah and Shuurmann [1511 ap-

plied methods similar to those developed in the present research to vertical

and horizontal accelerometer data to examine the vibration at different lo-

cations of the cargo deck on a C-5A aircraft. They also referenced Cooper

and Cooper's work [601 in non-supervised signal detection and pattern recog-

nition. Horel [111] wrote a very nice article on the theory and practice of

complex principal component analysis. He said it has been shown to be a

useful method for identifying traveling and standing waves in geophysical data

sets. The frequency domain principal component (FDPC) analysis is the most

general of the available methods of studying propagating phenomena. Com-

plex principal component (CPC) analysis in the time domain is considered an

attractive alternative to FDPC analysis. CPC analysis is essentially FDPC

analysis averaged over all frequency bands.

Krishnaiah [150] references Liggett's wo-k [166] in passive sonar and Priestly's

work [209] in system identification. Kelly et al. [134] applied concepts of statis-

tics of complex variables in an active sonar acoustic imaging problem where

noise n(t) was distributed according to CN(0,YE) where E = i1l. Tague

[264] used concepts developed during this thesis research for evaluating the

signal-to-noise ratio of a beamformer output. The complex matrix normal

distribution, whose form is verified in this thesis, is the natural setting for be-

ginning analysis of two-dimensional spatial data such as found in rectangular



31

sonar arrays.

The solution to the problem of this thesis is also the solution to some ap-

plications involving remote sensing, such as data compaction. It will allow

automrition of a wide range of analyses now requiring application area spe-

cialists. The list of areas to which these methods apply is growing as people

discover how to work with complex random variables. For some other appli-

cations, see references [165] and [128]. Other references to the statistics of

complex variables include [30][70][132][133][127][62][178][1791.

3.1 Acoustic Emission Analysis

Acoustic emission testing is the detection, location, and analysis of acoustic

emissions from materials under static or dynamic stress. The term "acoustic

emission" (AE) refers to the class of phenomena whereby transient elastic

waves are generated by the rapid release of energy from localized sources within

a material, or the transient elastic waves so emitted. Other (less preferred)

terms used for the same phenomena are "stress wave emission" (SWE) and

"microseismic activity". Standard definitions for terms relating to acoustic

emission are given in reference [32].

Short [2431 noted that the first major systematic approach to acoustic

emission of materials under stress was by Kaiser. Kaiser concluded that the

number of emissions increased with the applied stress, and that after unloading
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there was no acoustic emission upon reloading until the previous maximum

load was exceeded. This is known as the Kaiser effect, and is observed both

in metals and composites at low loads. If a composite is not held at a load in

the elastic region until all emissions have stopped and is unloaded, emissions

then occur at a load lower than the previous maximum load.

Acoustic emissions are detected using one or more transducers, usually

piezoelectric transducers, to obtain an electric signal proportional to the me-

chanical vibration at the location of the transducer. An array of transducers

is required to locate the source of an emission by comparing the arrival times

of acoustic transients at each transducer. A multichannel analyzer is used to

cross-correlate the signals in the time domain.

An acoustic emission may be identified by its signature in the time and

frequency domain. Within the time domain, the important parameters are

the amplitude rise time and emission duration. Emissions are also classified by

their frequency spectrum. Together, emissions are characterized by their time-

dependent frequency distribution. This is a function of the type of material,

geometry, structures coupled to it, the applied stress, and the mechanism

producing the emission.

AE testing is still in its infancy. Theoretical work lags far behind its use

in practical applications. A very basic open question is why growing cracks in

some materials emit many AEs while in other materials growing cracks emit
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hardly any AEs [1681. A procedure for AE testing for fiberglass reinforced

plastic tanks is contained in [33].

Applications require recognition that sound propagation is dispersive. When

the structure is liquid loaded, the analysis must also recognize that there is

coupling between propagation modes. A very short time after emission, most

(over 93%) of the energy is in bending waves, which means that a surface

mounted transducer will be effective as a sensor [77].

The use of triangulation which works nicely against a point source is not

optimum against a source that is spatially extended or against multiple sources

[1951. Triangulation search for emission sites is time consuming and makes

poor use of the data. Alternatives include the use of surface mounted arrays.

This overcomes the problem of detecting and locating multiple sources, and

mapping of sources that are not small enough to be considered point sources.

This approach was examined by Simaan et al. [244]. The authors assumed a

constant speed of sound and thus treated only longitudinal waves. However,

by processing signals at a selected frequency, these concepts can be applied

to bending (transverse) waves. By doing this at several frequencies, an added

benefit is that the time-dependent frequency signature at the source location

can be reconstructed which aids the classification of the type of emission.

AE data is very noisy. Deciding how many sources exist is typically de-

termined by the judgment of the engineer in post-processing of the data. Re-
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moval of the analysis engineer from the immediate test environment restricts

the ability to take timely action for follow-up testing, or examination of the

test environment for explanations of the signal that may be due to something

possibly obvious to an on-site observer. Thus, in situ automated detection and

emission site determinmation not only increases the efficiency of the testing, it

allows observation of causes that otherwise would escape notice or explanation.

Because AE data is noisy, the covariance matrix will contain all nonzero

eigenvalues. It is critical to determine which of the eigenvalues are associated

with AE signals and which are associated with noise. When the ratio between

adjacent eigenvalues is large, making this judgment by merely examining the

eigenvalues without other processing is appropriate. Almost always, the large

eigenvalues will be associated with an AE of interest, and the small ones will

be associated with noise. When the ratio between adjacent eigenvalues is not

large, then it is more difficult to make the judgment without a more formal

approach.

In traditional AE testing, a tank or vessel is subjected to artificially in-

duced forces to place the material under enough stress to produce emissions

at existing flaws. For example, a tank might be pressurized well above its nor-

mal operating pressure. Enough emissions are produced, and the monitoring

period is long enough, that the signal-to-noise ratio is large enough to produce

a detectable and usable signal.
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There are circumstances where this might be undesirable. For example,

traditional methods of applying the stress might be very expensive, time con-

suming, or hazardous. This might be the case for testing the hull of a ship.

The cost of testing might be significantly less by not requiring the ship to

enter dry dock. By decreasing the required signal-to-noise ratio, it might be

possible to use the normal operating forces of the industrial process, or the

forces of nature, to provide the stress-inducing force needed to produce AE

events under usually safe conditions.

If the industrial process is critical and possibly hazardous if corrective

action is not taken shortly after the onset of a failure, continuous monitoring

might be desirable. This means that monitoring must be done under normal

operating conditions, which might not usually induce stresses large enough to

generate enough high level emissions to be detectable by present means. An

alternative monitoring technology is to embed or coat the object with optical

fibers or very thin wires. When a crack occurs in the material, the fiber or

wire breaks, detecting the existence of the first crack. The problem with this

method is that only the first crack along the filament is detectable. Subsequent

cracks along that filament are not detectable. A field monitoring technique,

such as EM detection, is required. Monitoring a nuclear reactor vessel might

be such an application.

Another motivation for wanting to make detection of AE events at a lower
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signal-to-noise ratio is to increase the area under effective testing. This could

speed testing of very large structures and thus decrease costs. This might be

the case for large natural gas tanks or pipelines.

3.2 Acoustical Oceanography

The problem addressed in this thesis is the same as the problem of determining

the number of different arrival angles at a vertical line array. In a propagation

loss experiment, for a fixed frequency, each arrival angle can be associated with

a different propagation mode. By determining the vertical directions of arrival

of a test signal during propagation loss experiments, it is possible to determine

more precisely the energy distribution of sound among the propagating modes.

Such examination is useful in situ to determine the adequacy of the hypothe-

sized propagation loss model used in planning the experiment, judging if the

propagation conditions are acceptable for continuation of the experiment as

planned, and planning the source placement for additional samples if any are

needed to meet the experimental goals. When transients are used as sources,

it is necessary to determine the number of received modes and directions of

arrival at a given frequency based on only a few samples. Verification of mode

presence early in an experiment and accounting for actual environmental con-

ditions allows for adjusting sensor depths to construct a mode filter for use for

the remainder of the experiment. This will increase the signal-to-noise ratio,
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allowing better data capture and analysis.

The general statistical techniques developed in the process of research for

this thesis can be applied to the multivariate analysis of ambient noise when

environmental parameters are also recorded. Krishnaiah [150] notes that the

problems of testing the hypotheses on complex multivariate populations play

an important role in drawing inference on the multiple stationary Gaussian

time series since certain suitably defined sample spectral density matrices of

these time series are approximately distributed as complex Wishart matri-

ces. Jobst and Adams [122] studied the statistics of ambient sea noise us-

ing two deep arrays in the North Atlantic separated in depth and by several

miles. They reported that the statistical tests showed that most observations

of narrow-band noise were consistent with the hypothesis that the in-phase

and quadrature components of ambient noise are zero-mean Gaussian pro-

cesses with equal power. Noise power is locally homogeneous over the array

aperture, and stationary for periods up to 22 minutes at 75 Hz. As a func-

tion of frequency, narrow-band ambient noise measurements are consistent

with the hypothesis of constant power in adjacent bands up to 0.22 Hz wide.

When analyses were extended to 0.8 Hz bands the noise power was no longer

constant.

Matsumoto [172] (p. 358) assumed isotropic Gaussian noise in reporting

on characteristics of Sea MARC II phase data. McDaniel [173] considered the
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underneath surface of the Arctic ice canopy to have a zero mean Gaussian

height distribution with an rms roughness of 1-2 meters for the purpose of

modeling high frequency forward scattering.

It is cautioned that the distributions that noise sources obey do vary ac-

cording to their cause. For example, wind-driven sea surface noise has a dif-

ferent distribution that noise due to long range shipping. Further, these will

be differently distributed than noise from snapping shrimp on a shallow ocean

floor, porpoise and whale whistles and clicking in the ocean volume, or oil

industry generated noise on the ocean floor.
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Chapter 4

OTHER APPROACHES

4.1 General Discussion

The purpose of this chapter is two-fold. First, it presents a setting in which

order estimation and parameter estimation are subsumed into one approach.

In the abstract setting, the problem reduces to finding that probability mea-

sure, from all the candidate probability measures, which "best" explains the

data. The second purpose is to present a very brief catalog of methods for

order determination other than that being examined in this thesis.

There are other approaches to model order identification. Methods tradi-

tional to statisticians can be found in texts for statisticians on linear models.

This is a question often asked when building regression models. Some tech-

niques used for order determination for regression models include the maxi-

mum correlation squared, the Cp, forward step wise variable inclusion, back-

ward step wise variable exclusion, and other criteria. S6derstr6m [250] consid-

ered the use of Wilks' likelihood ratio statistic and the F-test for comparing

two competing models. Prasad and Chandna [2081 hint at use of canonical

correlation between array subsets, where their application is bearing measure-

ment. Methods traditionally used for model order determination in the context

of linear regression analysis can be found in Neter and Wasserman [1901. Most
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of the comments made in this section are taken from one or morc refcrences.

Kundu [1581 discusses application of Cross Validation. The Cross Vali-

dation approach was studied by Lachenbruch (1975), Stone (1974 and 1977),

Dawid (1974), and C. R. Rao (1988). Cremona and Brandon [631 refer to a

Singular Value Plot criterion Rt. Others have looked at Jackknife procedures

and Bootstrap procedures. Bouvet [41] considered a Bayesian approach.

Recent developments popular in the electrical engineering model order de-

termination concentrate on techniques based on information-theoretic criteria.

These techniques are usually referenced in the literature by their initials rather

than their long title. An ancestor of these methods can be seen in the 1954

book by Savage (p.235 ff)[232]. He considers the evaluation of information

given two neighboring values of the parameter of an estimation problem. Ile

uses the concept of differential information which he says is even older than

Fisher's information.

The recent motivation for the information-theoretic approach is based on

the work by Akaike. His work is traceable to 1968, and he continued publish-

ing at least as late as 1979. A listing of 22 of his publications ([2] through [23])

gleaned from other papers referencing his work appears in the bibliography.

It was his innovative 1974 paper [16] discussing his method known as AIC

(Akaike Information Criteria) that is primarily responsible for the tremen-

dous subsequent world-wide activity in the information-theoretic approach.
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Akaike explains (Section V, p.719 of [161) that IC stands for information cri-

terion and A is added so that similar statistics, BIC, DIC etc., may follow.

Rissanen [224][225] and Schwartz [239] developed the MDL (Minimum De-

scription Length) method in 1978 and 1982. In 1986, Zhao, Krishnaiah, and

Bai [297](298] derived a statistically consistent estimator generalization of AIC

which is called EDC (Efficient Detection Criterion) or GIC (General Informa-

tion Criterion). In 1989, C. R. Rao and Y. Wu [219] proposed two discriminant

criteria that are strongly consistent. Other methods are CAT (Criterion Au-

toregressive Transfer), by Parzen in 1974 [203], and FPE (Final Prediction

Error). An ad hoc method is NEE (Noise Error Estimation).

4.2 Generalized Maximum Likelihood Esti-

mators

4.2.1 Introduction

If you choose the best probability measure to fit your random sample, then you

have determined the order of your system. Thus, we seek the measure that has

a covariance matrix of the right rank and also the proper parameter values if

the distribution family considered is parameterized. Note that this is stronger

than just determining the order of a system.

More abstractly, families of distributions with covariance matrices of differ-
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ent ranks, taken together, merely form a larger family of measures from which

to choose. This can also be extended to sets of different kinds of distributions,

such as considering simultaneously the normal and Poisson distributions. In

fact, in a parameterized family of distributions, for each fixed parameter, you

have an entirely different distribution. Except for computational convenience,

there is no reason to explicitly consider parameters when finding a maximum

likelihood estimator. A maximum likelihood estimator is merely the selection

of that measure, from among all measures you are allowed to look at, that

best fits the data from your random sample. Thus, you can even consider an

unparameterized class of measures. You might properly argue that in estab-

lishing sequences, the imposed indexing becomes a parameter even though the

index does not appear as part of a functional expression of the distribution.

The following discussion decodes remarks by Kiefer and Wolfowitz (p. 892-

893) [140] on several ways of generalizing maximum likelihood estimators.

The first set of generalizations treat the issue when the supremum of the

likelihood estimators is not contained in the allowable set. The second set

of generalizations repeat the first, but with the additional quality of using

the Radon-Nikodym derivative as a generalized probability density function.

Taken together, these approaches extend the classes of functions for which a

maximum likelihood estimator can be obtained. Application of these concepts

to the order determination problem was suggested by C. R. Rao [215].
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The close reader will observe that the application of these ideas, where the

allowable set of underlying covariance matrices are of different ranks and from

different complex Wishart distributions, may be problematical. At issue is that

all the measures under consideration must be defined on the same a-algebra.

In the idealized case, you end up with problems wanting to consider measures

with different a-algebras. For example, if you consider a singular bivariate

distribution in R 2, the Lebesgue measure A(R2) of a line is zero. Either you

decide that the offending set is allowable, albeit of measure zero, or you decide

that such a set is not in the a-algebra. Under the first interpretation, the

following theory applies. Under the second interpretation, the following theory

does not apply. The physical world is much nicer because we never have the

case of a truly deficient covariance matrix. The problem becomes one of testing

for significant differences. This is, therefore, one case where the abstraction of

an idea actually produces an approach that is very practical.

4.2.2 Lebesgue-Radon-Nikodym Theorem

In this section we present a statement of the subject theorem and define the

terms which will be used in the study of the likelihood estimators of Kiefer and

Wolfowitz. This material is from Rudin [230]. We begin with a few definitions.

Let t be a positive a-finite measure on a a-algebra M in a set X, and let A

be a complex measure on M. Then
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Definition 1 A << pt means A(E) = 0 for all sets E E M for which p.(E) = 0.

Definition 2 If there is an A E M such that A(E) = A(A n E) for every

E E M, then we say A is concentrated on A.

Definition 3 Let A,, A2 be measures on M. Let A, B E M such that A n B =

4b (the empty set), where A, is concentrated on A, and A2 is concentrated on B.

Then A, and A2 are mutually singular, and we write this condition as Al I A2 .

Theorem 1 The theorem of Lebesgue-Radon-Nikodym. Let ja be a positive

cr-finite measure on a u-algebra M in a set X, and let A be a complex measure

on M. Then

(a) There is then a unique pair of complex measures ha and A, on M such

that

A = Aa + A. (A is partitioned)

Aa << PL (Aa is absolutely continuous with respect to p)

A,, I P (A 8,, are mutually singular)

(b) There is a unique h E L1 (1 i) such that

Aa(E) = fE h dy

for every set E E M .

Some remarks are in order regarding what is important about the above

theorem.
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1. (Aa, A,), is called the Lebesgue decomposition of A relative to it.

2. Existence of the decomposition is the significant part of (a).

3. Part (b) is known as the Radon-Nikodym theorem.

4. The function h is called the Radon-Nikodym derivative of Aa with respect

to Y.

The theorem, remarks, and definitions make much more sense after looking

at figure 4.1.

S~x

Figure 4.1. Graphic Representation of the Lebesgue-Radon-Nikodym Theorem

In this figure, the complete region inside the frame represents the set X. We

have defined two measurable sets in the same a-algebra M. We will refer to

measures which are defined on this common a-algebra. Set A, in the left half

of the figure, is the set of elements of X on which the measure A, € 0. We can
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say that set A is the support of measure A8, or we say that A, is concentrated

on A. Everywhere outside of A we know that A, = 0. At those points in X

where A, = 0, we say that A. is singular. Similarly, set B is the set of elements

of X on which measure y : 0. Thus, B is the set on which y is concentrated.

In this particular example, the sets A and B are disjoint. In those regions

where both A. = 0 and t = 0, we say that A, and y are mutually singular. We

denote this by A, I y.

The notation for mutual singularity, A, I p, is suggestive of orthogonality.

Mutual singularity is a mathematically stronger concept than orthogonality.

All mutually singular functions are mutually orthogonal, but mutually or-

thogonal functions are not necessarily mutually singular. Functions that are

mutually orthogonal may individually attain non-zero values on the common

set over which the pair of functions are orthogonal.

Mutual singularity is a property of functions that are measures defined on

a common sigma-algebra. It is useful to think in terms of these functions as

having mutually exclusive support.

Orthogonality is a property of a pair of functions, a common domain, and a

relation defined on those functions over the entire domain. Orthogonality does

not require the pair of functions to be measures. Orthogonality is a concept

usually dealt with when discussing inner product spaces. However, the inner

product is a stronger concept than what orthogonality requires of its relational
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operator.

Suppose we have another measure Aa that is concentrated on some subset

(possibly all) of B. Then everywhere Aa is nonzero we know that p is also

nonzero. An alternate way of saying the same thing is that everywhere P is

zero, we require Aa to also be zero. When this is true for every measurable set

E belonging to M, we say that p dominates Aa. We denote this by Aa < Y.

The Lebesgue-Radon-Nikodym theorem says that when you are given a

positive a-finite measure y on a-algebra M in a set X, and also given any

complex measure A also defined on M, then this measure A has a unique

decomposition A = A, + A8 satisfying the conditions that Aa < p and A8 I y.

Another way of saying this is that for any given pair of measures (A, st) that

are defined on the same a-algebra M, then there exists some subset A of X

on which A :# 0 when p = 0, and some subset B of X on which A 0 0 when

pu 5 0. This is a partitioning of the regions of X on which A j 0 where the

partition is determined by the region of X where p # 0. In fact, the set A can

be the B-complement of X, A = X\B = Xb. When viewed in this way, it is

obvious that this decomposition of A is unique for a specified y. Note also that

A. _L Aa-.

The part of the theorem that deals with the Radon-Nikodym derivative

is a bit more subtle. If you look at every measurable set E in a-algebra M,

then there exists only one function h that accurately describes the relation-
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ship between A, and y over the whole a-algebra. One of the points that must

be satisfied is that A, and y must be defined over the same a-algebra. Kol-

mogorov and Fomin [141] point out that the Radon-Nikodym theorem only

establishes the existence of the derivative h = dA , but does not tell how todp,'

compute it. They refer to Shilov and Gurevich (chapter 10) [242] for an ex-

plicit procedure for evaluating this derivative at a point x0 E X by calculating

the limit lim Aa(Ec where {E,} is a system of sets converging to the point x0

as c -+ 0 in a suitably defined sense. In a very generalized way, this might

define a sequence of sets such that for Ck < fk-1 we have Ek C Ek-1 subject

to the condition that xo E Ek. In the case of a function f defined on R, there

is an explicit procedure for finding the derivative of f at a point xo given by

lim Af = lim f(xo + Ax)- f(xo)
Ax--o AX Ax-o AX

There are some handy rules for working with the Radon-Nikodym deriva-

tive. They are very similar to the rules for working with common derivatives.

The primary difference is the explicit statement of conditions under which the

rules work. The following are given by Phillips (p. 429) [207].

Theorem 2 Manipulation Rules for the Radon-Nikodym Derivative.

1. If a, bE R+, v < p, and A < p, then

d(av + bv) dv dA
= a- d+
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Note that both measures v and A are dominated by the same measure

dgp. It is not strictly correct to call A• an operatrThtenilpot

here is that 1 is meaningless. However, if you did consider it to be an

operator, this shows that the operator is linear.

2. If v <«it and y < A, then v <« A. The relation << is transitive.

3. Given measures v, it, and A such that v << • and L <« A, then there is a

chain rule

dv dv dy)

Note that the measure in the denominator of each term dominates the

corresponding term in the numerator.

4. If v < p and p << v, then

(dv~' (p

What does it mean for v <K p and y << v? It means that measures v

and p have the same region of support in X, or equivalently v and p are

concentrated on the same set.

A very interesting note is that if v and u are both measures defined on the

same a-algebra M, then v + p is also a measure defined on a-algebra M. Fur-

ther, this new measure v + i- dominates both v and p. When we specialize our

discussion to probability measures, then if v and p are probability measures,
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then av + fly is also a probability measure when a + 3 = 1. In general, any

n n

convex sum S = a kPk, E ak = 1, of probability measures {gk}k=1 defined
k=1 k=1

on the same cr-algebra M is also a probability measure, and that convex sum

dominates each individual probability measure. It also dominates any convex

sum formed from a subset of those probability measures.

4.2.3 Kiefer and Wolfowitz Development of Maximum

Likelihood Estimators

We are now prepared to consider the work of Kiefer and Wolfowitz [140]. In ex-

amining the source literature, the reader will notice that Kiefer and Wolfowitz

denote the parameter space by × x F where I have only used F. They used the

more structured space definition to facilitate their proof of consistency. Their

level of detail is not required for the development of the following ideas.

Recall that a likelihood function is the conditional joint distribution of a

collection of random samples for a given underlying distribution. The usual

case of interest is where the underlying distribution is the unknown being

sought. When the random samples are assumed independent and identically

distributed, the likelihood function is the respective product of the marginal

conditional distributions. We consider two classes of maximum likelihood es-

timators which are distinguished by the existence or non-existence of some

dominating measure t.
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Maximum Likelihood Estimators when a Dominating Measure Ex-

ists

Let a dominating measure y exist. This assumption distinguishes the following

generalizations from ones that require use of the Lebesgue-Radon-Nikodym

derivative.

Maximum Likelihood Estimator (MLE)

For a given random sample of size n, such a likelihood function can be

expressed by
n

L(z,,, z -) z. f(z. I -)

where -y is the underlying distribution, which we recall is a measurable func-

tion. We are interested in a sequence of p-measurable functions {f} such

that

L(z,..,z, I (z,...,zn)) >? sup{L(z,...,z I- -), , E F)

for almost all (z1,.., z,n) with respect to measure p, and for all nonnegative

integers n E N.

Let z, = (z],.,zn) and consider

sup{L(zi,"". 'Zn I7), -y E r} def sup{L(zn I y), -y E L}

where L is a mapping from the product space Z x F into some space Y. The

supremum is taken in Y. The finiteness of L for all (-y,n) impl]-- fbat the
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supremum of L is also finite. Therefore, I can have different sequences of

-y E F that produce convergent sequences of L to its supremum, as shown in

figure 4.2.

Figure 4.2. Maximum Likelihood Estimate (MLE) Convergent Sequences of L

There is no guarantee that the sequences {Ln,k} which have a common

supremum are produced by a unique sequence {1-Y,k}. For some fixed value of

n, we can observe the following.

Supremum, L Sequence Parameter Sequence

sup{L(zn I -/I,),-' ,L(zn I -lk), {yf-lk} -Y *

= sup{ L(Z, I -- l2),..., L(Zn I -YU),"" {I2k } I;

= sup{L(zn I -Yn2,), L(Zn I "-Yk),"- {Y•k)} l
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So, we get a maximum likelihood estimator, not necessarily a unique max-

imum likelihood estimator. It is possible that 31ý is not contained within the

set F of allowable distributions or measurable functions. If there is no "/•

contained in F, then we say that the maximum likelihood estimator does not

exist.

Modified Maximum Likelihood Estimator (MMLE)

This is an approach to extend the concept of a maximum likelihood es-

timator to increase the number of cases for which a maximum likelihood es-

timator exists. As with the maximum likelihood estimator, we seek to find

sup{L(z. 1 -), -y E F}. The supremum is taken of L in the set Y.

We are interested in a sequence of p-measurable functions {-} such that

for some 0 <c < 1, we have

L(zi,. .. ,z. I "'(Zl,...,Z')) Ž c.sup{L(z,,. z,zI -y), IE FE

for almost all (z,.- , z,,) with respect to measure p, and for all nonnegative

integers n E N. When c = 1, this is the usual maximum likelihood estimator.

Consider looking at a number a little less than W = sup{L(z, I -Y), -Y E F},

such as cW where c E (0, 1). Then for c sufficiently small, we hope to find

j, E F such that L(z,, I j,,) > cW. In essence, we are defining a distance

between L(z I -'y) and L(z I -y2). Call it p(Li, L-2 ). Conceptually, we want to

find those L2 having -y E F such that p(L1 , L2) < c where L1 is the supremum
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of {L(z, I -t), -y E F} for some f > 0. Figure 4.3 illustrates the concept. It

shows a region of F such that the maximum likelihood estimator is not in

A C F, but p(L(zn I y*),L(zt I -1A)) < f.

A©0

Figure 4.3. Modified Maximum Likelihood Estimator (MMLE) Convergent

Sequences of L

The modified maximum likelihood estimators found in this way are not

necessarily in the neighborhood of a maximum likelihood estimator when a

maximum likelihood estimator exists, but a maximum likelihood estimator

will always have a modified maximum likelihood estimate. For parameterized

distributions, it is possible that a modified maximum likelihood estimator y,*

could be at a considerable distance (by some suitably chosen distance function)

from any maximum likelihood estimate ,.
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Neighborhood Maximum Likelihood Estimator (NMLE)

A neighborhood maximum likelihood estimator is a sequence of p-measurable

functions {'y} satisfying

sup{L(zi,,. I7), -1 E F, 6(7,7t(z,,. .,z.)) < c.}

for almost all (z,,. ., z,,) with respect to measure p for a sequence of {f,}

where c,, > 0 and 4, - 0.

Again, let L be a mapping from the product space Z x F into Y. As before,

a whole set of parameter values can be obtained that produce the same sup L.

Call these {f'ji}=In for a fixed n. Then we get the following.

Supremum, L Sequence Parameter Sequence

sup{L(z. I -7')," ,L(z,, I rnD," limk-,o{ybk -4

sup{L(z, 1 -1m1)," ,L(z. I 7Y,,k)," limk-.oof{ymk} i m

The concept is illustrated in figure 4.4.

Pick some f,, > 0, and define a distance function 6(Il,12). Then -f, is any

-y within distance :, of im. Then there is a family {'n,,n } of neighborhood

maximum likelihood estimators, just as there was a family of modified or

traditional maximum likelihood estimators in the previous examples. What

has been gained is that the neighborhood maximum likelihood estimator exists.

Even though i might be outside the space F of allowed parameters, 7"

can be chosen in F. When you find sup{L(z, I -Y), 'Y E F, 6(7,7*) < f,,, you
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Figure 4.4. Neighborhood Maximum Likelihood Estimator (NMLE) Conver-

gent Sequences of L

ensure you have located a maximum likelihood estimator by constraining this

to equal supIL(z,, I -Y), -Y E ri.

Maximum Likelihood Estimators Without Requiring Existence of a

Dominating Measure

I seek to generalize the concepts above to ensure the existence of an estimator

in its generalized form. For this, we turn to the Radon-Nikodym derivative as

a generalization of a density function.
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Generalized Maximum Likelihood Estimator (GMLE)

Following Johansen [123], let P1 and P2 be members of a non-dominated

family of probability measures P. Thus, P1 and P2 are measures. Further,

there is no measure A E P that dominates all the other measures Pk E P.

Recall that if Pk < A, then everywhere A = 0, we also require Pk = 0 for every

measurable set E belonging to sigma-algebra M. We know, however, that if

we sum any two measures, the sum dominates the individual measures. Thus

P1 < P1 + P2 and also P2 < P1 + P2 . Define the Radon-Nikodym derivative

r (dP 1d(P1 + P2)z

The term -P (zn) is the Radon-Nikodym derivative of the measure P1 withd(P, +J2) n

respect to the dominating measure (PI + P2) evaluated at the point z,. Then

define 5 as the generalized maximum likelihood estimator if, for arbitrary fixed

z", the condition r(z., P, P) >_ r(zn, P, P) is satisfied for all P E P. This says

that 5 is the generalized maximum likelihood estimator if

dP dP
d(P + P) >d(P +)

for all P E P.

So, we are searching over the space of all allowable probability measures

for the one that maximizes the Radon-Nikodym derivative, when taken with
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respect to the pair-wise sum of the maximizing measure and each other al-

lowable measure. Johansen [123] notes that when P is dominated by a-finite

measure p, then equation 4.1 is equivalent to the usual definition of a maximum

likelihood estimator.

The following are some useful relevant observations made bv Kundu [157].

Suppose that r(z, P, P) >_ r(z, P, i5) and P + P <<1L. Now perform a change

of variables. Let

P(E) = r(z,P,P)d(P + P)

and let

P(E) = Jr(z,P, P5)d(P + F)

Then

where P + P «t. This equals

P(E) = g(z, P, P)dit

where

g(z, P, P) = r(z, P, P)d(P + F

dp

and

P(E) = fEg(z,P, P)dy

Therefore,

r(z, P, P) > r(z, P, P)
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implies

g(z,P,P) Ž g(z,P,P)

and both imply P(E) > P(E).

C. R. Rao [216] pro-vided the following useful observation. To see the

relationship between Johansen's expression for generalized maximum likeli-

hood estimator and that defined by Kiefer and Wolfowitz, first observe that if

___gdP_ then
r d(P,-IP2)'

dP1  _ d(P1 + P2 ) - dP_ _ dP2

d(PI + P2) d(P± + P2) d(P 1 + P2 )

Then, the condition of Johansen that

dP ( dP

d(P + P) d(P + P)

for all P E P becomes
dP [,"

d(P+P) (Z<)

d(P+P) (zr)

which implies
dP

d(P+P) 1
d(P4()")

which implies

r(-, P,P) r- <1
1- r(zP,P) 1-" -

for all P E P.

The benefit of the generalized maximum likelihood estimator is that it

can handle the situation where t here is no doininating measure. Using the
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Radon-Nikodym derivative does not avoid the issues of existence of a maximum

likelihood estimator, or convergence, or uniqueness. The same geometry as

shown in figure 4.2 applies.

Generalized Modified Maximum Likelihood Estimator

As with the generalized maximum likelihood estimator (GMLE), we extend

the definition of the modified maximum likelihood estimator by using the

Radon-Nikodym derivative as a generalized density. The discussion about the

existence and uniqueness of a modified maximum likelihood estimator also

applies to the generalized modified maximum likelihood estimator (GMMLE).

Consider the form

dP dP
.(Z") Ž! c (

d(P + P) d(P + P)

for all P E P. This is equivalent to saying

d(P+?) cr(z.,P,P)-ý = cd(z,,, P, P) <_ I
dP (zn) 1 - r(z., P, P)

for all P E P. In particular,

csup{d(z., P, P), P E P1 <_ I

When c = 1, this is the generalized maximum likelihood estimator.

Generalized Neighborhood Maximum Likelihood Estimator

The concept of the Generalized Neighborhood Maximum Likelihood Esti-

mator (GNMLE) is to find "maxiinni likelihood estimators", and choose an
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estimator whose distance is less than some c within the allowable parameter

space or family of distributions.

In using the Radon-Nikodym derivative as a generalized density, the pro-

cedure becomes:

1. Define a distance function /(PI, P2).

2. Choose E > 0.

3. Find the set {P•,} of functions which possibly are not within the allow-

able space P which satisfy

sup{d(z., P,P*),P E P) :_ 1

4. Pick a Pm corresponding to each Pý within 7P such that b(Pm, P,ý) < E.

If P* is the function found by

sup{d(zn,P,P*),P E P} _ 1

then the generalized neighborhood maximum likelihood estimator P satisfies

sup{r(z., P, P*), P E P, b(P, P) < cI = sup{r(zn, P, P*), P E P I

Again, the discussion about the existence and uniqueness regarding the neigh-

borhood maximum likelihood also applied to the generalized neighborhood

maximum likelihood estimator.
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4.2.4 Uniqueness of the Maximum Likelihood Estima-

tor

A question was raised about the uniqueness of the maximum likelihood esti-

mate. The suggestion that for general sets of distributions that a maximum

likelihood estimator might not be unique is pictorially presented in figure 4.1.

C. R. Rao suggested that when the random sample constitutes the whole sam-

ple space that the maximum likelihood estimator would be unique. In general,

the method of maximum likelihood does not produce a unique estimator. How-

ever, when the full sample space is included in the formulation of the likelihood

function, then the maximum likelihood estimator is unique almost everywhere.

Counterexample to Uniqueness

Hogg and Craig (p. 207, problem 6.3) [109] provides a counterexample. Let

xI, X2,' .. , be a random sample of a distribution with density function

f(x;O) = 1 where 0 - 1 < x < 0 + -, for -cc < 0 < oo, and f(x;0) = 0

elsewhere. Let {xhx 2,." , x,n} be a proper subset of the full sample space.

Then let yj < Y2 < ... < Y,, be the order statistic from this random sample.

Then every statistic u(x,,x 2 ,... *x,,) such that

y- - < ,,(.r,..x2 ......xr) •_, y, + -

2 - I
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is a maximum likelihood estimator of 0. In particular,

(4 y, + 2y. + 1)/6

(yi + y.)/2

and

(2 y, + 4y,, - 1)/6

are three such statistics. Thus, uniqueness is not in general a property of a

maximum likelihood estimator.

When the Random Sample is the Full Space

Recall from the Lebesgue-Radon-Nikod~m theorem that when p is a positive

a-finite measure on a a-algebra M in a set X, and A is a complex measure on

M, then there is a unique a.e.[p] function h E L'(p) such that A,(E) = fE h dp

for every set E E M, where A = A, + A,, A, << p, and A, I p. This means

that if two functions h, and h2 satisfy this, then they differ only on a set of

p-measure zero, i.e. p{x : hi # h2 } = 0.

When the set E is the whole sample space, then A0(E) = A0,(X) = I when

(X,.M) is a probability space. Thus fX hdp = 1. When p is taken to be

Lebesgue measure of the appropriate dimension and X is Euclidean, then h is

our probability density function in the usual sense and the measure is often

denoted by m.
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If h(x, 0) is a parameterized family of density functions, consider the collec-

tion of all 0, such that fX h(x, 0,)dm = 1. Then h(x,0,,,) = h(x, 0, 2 ) a.e.[mJ.

In the general case, this does not require 0,, = 0,2. To assert uniqueness, more

must be known about the family of density functions under consideration. For

example, we know from Bickel and Doksum (p. 106, theorem 3.3.2) [40] that

the exponential family given by

k

f(x; 0) = exp{- ci(0) T(x) + d(O) + S(x)}
i=1

where x E A, 0 E E, with C denoting the interior range of (c1(0),..., ck(0))

has a unique maximum likelihood estimator of 0 if £{Ti(x)} = Ti(x) for i =

1,--. ,k, has a solution 0(x) = (01(x),. dk(x)) for which

(cl(0(x)),... ,Ck((X)) E C

Thus, if we sufficiently restrict the allowable set of functions, we can achieve

uniqueness, but uniqueness is not automatically a property.

Not everything thai. needs to be recorded has been recorded here. In partic-

ular, some thought is needed with respect to singular distributions and what it

means in terms of allowable sets in M as well as the implications for choosing

pu. This question is relevant to this thesis topic, but has not been pursued.
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4.3 Specific Techniques

Most workers dealing with order estimation assume an information-theoretic

approach. Techniques based on this approach have the advantage that we

know how to do the computations today to get answers. Some very nice

analytical surveys of techniques have appeared from time to time, although

they are being developed almost as fast as they can be printed. Because these

are attractive alternatives to the work in my thesis, they are cataloged here for

the reader's use. Some of these had their birth in the study of univariate real

time series. There are also techniques listed here that use approaches other

than information-theoretic. Many of the below techniques have been discussed

in the context of a line array with equally spaced elements, using the spatial

analog to sampling a stochastic sequence indexed by time.

Pukkila and Krishnaiah 1211] report that most of the proposed information-

theoretic order determination criteria for ARMA(p, q) models can be expressed

in the form of equation 4.2. The word ARIMA should not be a distractor. That

was the motivating context of the discussion by Pukkila and Krishnaiah. If

you prefer, let q = 0 to apply this to an autoregressive problem which has

a spatial analog with the equally spaced line array. Even more basic than

that, the criteria of the form discussed in this paper are derived from a ba-

sic information-theoretic approach. The number (p + q) is merely the total

number of parameters in the model. It arises as the degrees of freedom of
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a X2 distributed random variable justified by a large sample approximation

used to satisfy application of the Central Limit Theorem in statistics. Akaike

[12] discusses application of this statistic to factor analysis, principal com-

ponent analysis, analysis of variance, and multiple regression, in addition to

autoregression of time series which electrical engineers are familiar with.

6(p, q) = n log 2 + (p + q)g(n) (4.2)

You recognize that &2 is the maximum likelihood estimate or its approximation

for the residual variance o2. The term (p + q)g(n) is a nonnegative penalty

term which increases as the number of parameters increases. It is noted that

the term n log &2 tends to decrease as the number of parameters increases.

The function g(n) produces other criteria which you may recognize. When

g(n) = 2, we get the AIC(p, q) criterion. The BIC(p, q) criterion is obtained

by selecting g(n) = log n. The HQ criterion is obtained by g(n) = clog log n

where c is a specified constant. EDC is obtained by q = 0 and g(n) = "Y(n)

where -y(n) is a sequence of positive numbers such that

limn-c, '-(n)/n = 0, limn-,_ -y(n) = oo

A variation on this is obtained by selecting -'(n) such that

limn-_, -y(n)/n = 0, limn-,, -"(n)/(loglogn) = 00

They call attention to a survey of different univariate order determination by

de Grooijer, Abraham, Gould, and Robinson 169].
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4.3.1 Akaike Information Criterion (AIC)

The definition givca by Akaike in his December 1974 paper (161 is given in

equation 4.3.

AIC = -2max{log(jpdf)} + 2(df) (4.3)

The term jpdf is the joint probability density function, where you choose the

model yielding the minimum AIC. It is derived using the Kullback-Leibler

mean information measure [155] (pp. 26-27). The requirements and assump-

tions are: (1) the distribution must be a regular member of the exponential

class in the sense of Hogg and Craig (p.357-358)[109], (2) large sample case (see

p. 718, left, bottom[16]), (3) the third and higher order terms of a Taylor series

expansion are dropped (see p. 718, right, middle[16]), (4) f f'(x, Oo)dx = 0 and

f"(x, Oo)dx = 0 (see Kullback, p.27, item3[155]), and (5) AIC is computed for

each model considered. Parzen [203] defines AIC as the value of m minimizing

AIC(m) = logm + 2-m
T

where &2 is the estimator of the mean-square prediction error U2 , and T is

the total number of samples. Cremona and Brandon [63] give the following

expressions for AIC:

AIC(M) = N In VN + 2p

or

WN = N In VN + W(N,p)



68

where ýo(N,p) = 2p. The term VN is the minimum of some loss function

VN (0, A) (quadratic error criterion or likelihood criterion) and M is the model

order and N is the number of samples. The quantity p is the size of the

observation vector.

Note that we get AIC by selecting g(n) = 2 in equation 4.2. Pukkila and

Krishnaiah [211] report that Shibata [241] proved that AIC is not a statisti-

cally consistent estimator for the order of a univariate autoregressive model.

Instead, the AIC criterion tends to overestimate the order of an AR(p) model.

Similarly, AIC does not produce a consistent estimate for the order of an

ARMA(p,q) model [1011. Although Rissanen [226] regards consistency an

generally necessary property for any criterion, he notes that consistency does

not in itself guarantee good estimation results for small samples.

Kashyap [129] was one of the first to bring serious challenge to AIC. He

showed that AIC was not statistically consistent. For the AIC rule, the prob-

ability of error is not less than 0.156 even when n tends to infinity. Kashyap

recommends that attention be restricted to the class of consistent decision

rules. He proposes a consistent decision function.

In 1983, Wax and Kailath [278] proposed an alternative for the number

of free adjusted parameters within a model to be k(2p - k) + 1 where k is

the test order and p is the size of the observation vector which is sampled N

times. These vectors are assumed to be independent and identically distributed
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according to the real multivariate normal distribution N,(O, R). With this

adjustment, AIC is modified as shown in equation 4.4. They observed that

AIC yields an inconsistent estimate that tends, in the large-sample limit, to

overestimate the true rank.
P N

fl J?rI
AIC(k) = -2 log i=:k+1 p-k + 2k(2p - k) (4.4)

i.k+ j

A few words about consistency are in order at this point because of the

wide-spread criticism of Akaike's work. "Consistency" in statistics is a techni-

cal term. For an estimator that depends on the sample size n, then it is called

consistent if its expected value is unbiased when n tends to infinity. Cochran

(pp. 21-22)[55] has the following to say about estimators and consistency.

The precision of any estimate made from a sample depends

both on the method by which the estimate is calculated from the

sample data and on the plan of sampling. ... When studying any

formula that is presented, the reader should make sure that he or

she knows the specific method of estimation for which the formula

has been established. -.. [In the context of sampling theory,] a

method of estimation is called consistent if the estimate becomes

exactly equal to the population value when n = N, that is, when

the sample consists of the whole population... Consistency is a

desirable property of estimators. On the other hand, an inconsis-
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tent estimator is not necessarily useless, since it may give satis-

factory precision when n is small compared to N. . In classical

statistics, an estimator is called consistent if the probability that

it is in error by more than any given amount tends to zero as the

sample becomes large.

Bickel and Doksum (pp. 134, 141, 225)[401 concur with this remark, and

have the following to say about various kinds of estimators. The notions of

consistency, asymptotic mean, variance, and unbiasedness are the properties

of the sequence of the estimates {T,(xl,..., x,)} for n > 1, not of any single

T,. These are properties of the method of maximum likelihood, not of the

maximum likelihood estimate for a particular sample size. ... Small sample

studies comparing the behavior of uniformly minimum variance unbiased esti-

mators (UMVU) and MLEs are inconclusive. Simple examples in which there

are many nuisance parameters are known for which MLEs behave very badly

even for large samples. Neither MLEs nor UMVU estimates are satisfactury

in general if one takes a Bayesian or minimax point of view. Nor are they

necessarily robust. ... Likelihood ratio tests are based on heuristic grounds.

On this basis, there is insufficient evidence to discredit Akaike's work. We

still have work to do for the small sample case.
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4.3.2 Bayesian Information Criterion (BIC)

Pukkila and Krishnaiah [211] credit Schwarz [2391 and Rissanen [224] for in-

dependently developing BIC starting from different points. BIC is defined in

equation 4.5. This equation is obtained by letting g(n) = log n in equation 4.2.

BIC produces a consistent estimate (P3, 4) for the order of an ARMA model.

BIC(p, q) = n log P2 + (p + q) log n (4.5)

4.3.3 Kashyap Information Criterion (KIC)

This is a variant of AIC. This discussion is based on [129]. Let the estimate

of the unknown order m0 based on YN be given by

m* =argr min dm(YN)]
[mE(1,T)

where

d,(YN) = N Inp, + mrf(N)

The quantity p• is the residual variance for the fitted autoregressive model

having m lag terms. This term can be recursively computed from YN. See

references [71][169]. Deterministic function f(N) satisfies f(N) > 0, f(N)

oo, and f(n)/N --+ 0.
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4.3.4 Hannan-Quinn (HQ)

Pukkila and Krishnaiah [211] cite Hannan and Quinn [101] as the source for

the HQ criterion given in equation 4.6 where c is a constant to be specified.

This equation is obtained by letting

g(n) = clog log n

in equation 4.2. Select a constant c > 2 to guarantee a strongly consistent

order estimate.

HQ(p, q) = n log52 + (p + q)c log log n (4.6)

4.3.5 Efficient Detection Criterion (EDC)

Zhao, Krishnaiah, and Bai [297] proposed the procedure for the white noise

case now known as the Efficient Detection Criterion (EDC). Efficiency is a

technical term in statistics. An estimator is called efficient if the Cramer-

Rao lower bound is achieved. Zhao, Krishnaiah, and Bai [298] extended that

work to the colored noise case for the signals and noise having independent

real Wishart covariance matrices. They considered the asymptotic case. Bai,

Krishnaiah, and Zhao [36] define EDC as follows. Let x(t) = As(t) + n(t)

where the column signal vector s(t) and the column noise vector n(t) are com-

plex random vectors distributed independently with mean 0. let the matrix

X = [X(t 1),... , x(tn)] be the sample of size n of the process x(t). The covari-
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ance of s(t) is given by T, and the covariance of n(t) is given by cr2 Ip where

Ip is a p x p identity matrix. The matrix A = [A(0i),-.- , A(0q)] is a complex

vector of unknown parameters associated with the jth signal. The number of

unknown parameters for each signal is assumed known. Let the eigenvalues of

Sbe A > ... > A2. Let S,, be the maximum likelihood estimator of E where

nSn = XXH, and let the sample eigenvalues of S, be given by l2, 2l. Let

Hq be the hypothesis that the number of signals is equal to q. Thus

Hq : AlŽ"> ... q+A1 P

When a 2 is unknown and {x(ti)}n are independently distributed as complex

normal, the logarithm of the likelihood ratio test statistic for Hq is given by

L(q)=n {(logl (p-q)log E /2
E-+ p -- qi=q+l

Then EDC is given by equation 4.7.

EDC(k,C(n)) = -2L(k) + v(k,p)C(n) (4.7)

In equation 4.7

v(k,p) = k(2p - k + 1) + 1

is the number of free parameters when Hk is true. Then the estimate • of q is

the value of 4 that satisfies equation 4.8

EDC(4,C(n)) = min{EDC(O,C(n)),. .,EDC(p- 1,C(n))} (4.8)
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The quantity C(n) is chosen so that it satisfies the following conditions: 1)

lim[C(n)/n] = 0 and 2) limr[C(n)/loglogn] = oo. When 0,
2 is known then it

can be assumed to be unity without loss of generality. Then EDC* is given

by equation 4.9.

EDC*(4 ,C(n)) = min{EDC*(O,C(n)),. ,EDC*(p- 1,C(n))} (4.9)

In equation 4.9, the individual entries over which the minimum is taken is

given by equation 4.10.

EDC*(k,C(n)) = -2L*(k) + v*(k,p)C(n), (4.10)

In computing the term L*, r is the number of sample eigenvalues 1i greater

than unity where

P
L*(k) = n •, (o/ -

i=l+min(T,k)

The 1989 paper [36] gives bounds under certain conditions on the probability

of a wrong decision. In this paper, Bai et al. point out that the estimator is a

statistically consistent estimator, the rate of convergence of the estimate of the

number of signals to the true value is rapid, and no threshold value is required

to form the estimator. This paper is a good entry point into the literature on

information theoretic approaches.
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4.3.6 White Noise Tests (TI, TAIC, TBIC, THQ)

Pukkila and Krishnaiah [211] consider the order determination problem for

real-valued autoregressive (AR) models and using concepts motivated by Box

and Jenkins [42]. Testing the adequacy of a fitted model is based on the

estimated autocorrelation structure of the residual series from the estimated

model. Starting from a simple, parsimoniously parameterized model, a model

builder adds new parameters until the residual series is close enough to a

white noise. Pukkila and Krishnaiah accomplish this by creating a family of

test statistics built from the forms of AIC, BIC, and HQ.

For the autoregressive (AR) model, equation 4.2 is minimized for p =

0, 1,.-., p* where p* is the largest model order we are willing to consider, and

the quantity q = 0 is used to restrict the case to the AR model. They use the

Hannan and Quinn estimator for the AR model residual variance given by

p

& 2 =c(o) (1 -ZEkr(k))
k=1

where 1," , p are the Yule-Walker estimates of the autoregressive coeffi-

cients {qk}• and {r(k)}[ are the autocorrelations. The autocorrelations are

computed by r(k) = e(k)/c(O) where

In-k

c(k) =- r -k )(Xt+-t
f t=a

for 1 < k < p. The {¢k}p are obtained by solving the Yule-Walker equation
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4.11.

r(0) r(1) .. r(k - 1) ,(1

r(1) r(O) r(k- 2) ¢2  r(2)
(4.11)

r(k- 1) r(k-2) ... r(0) tLkJ r(k)

The test statistic is then given by equation 4.12.

Ti(p*) = min O, n log 1 - E kr(k) + pg(n) (4.12)
--P5 1 k=1

If Ti(p*) < 0 then reject H0 : {xt is generated by an AR(0) process} in favor of

H1 : {xt is generated by an AR(k) process where k > 0}. To use a traditional

order estimation criterion for b(p) substitute the corresponding expression for

g(n). Thus, to obtain TAIC(p*) corresponding to AIC, select g(n) = 2.

Similarly, choose g(n) = log n for TBIC(p*) and choose

g(n) = clog log n

to get THQ(p*). Pukkila and Krishnaiah also provide the asymptotic values

of the significance levels a(n) and lower bounds for the power functions for

these proposed tests.

4.3.7 Minimum Description Length (MDL)

The comments regarding MDL are based on [224][225][226][811.

(h, ) = argmin [-m logp(x;O)+ log N] = argrmino( x)
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The number of parameters in parameter vector 0 is n. N is the length of the

observation sequence. Ie(x) is the information of the sequence x with respect

to the given probability distribution family. Feder's article is very readable.

The reader is encouraged to consult reference [225] which generalizes MDL

so that it is invariant with respect to all linear coordinate transformations.

Rissanen does not compromise on technical quality, his writing is very clear,

and he accompanies his developments with insightful remarks.

Define

log*(y) = logy + log log y +

and

II01IM(0) = -, M(O)O >

where < el > is the inner product of the k-component parameter vector 0

and the product of the information matrix M(O) = n x 19 times 0. The value

of k is the model order. The information matrix 1, is defined by

1 aE0 60

Then the MDL criterion is given by equation 4.13.

- log P(y, 0) = - log P(y 10) + log * (1101IM(e)) (4.13)

Rissanen calls - log P(y, 0) the joint ideal code length which is to be minimized

as a function of model order k.
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As discussed earlier, in 1983 Wax and Kailath [278] proposed an alternative

for the number of free adjusted parameters within a model to be k(2p - k) + 1

where k is the test order and p is the size of the observation vector which is

sampled N times. These vectors are assumed to be independent and identically

distributed according to the real multivariate normal distribution Np(0, R).

With this adjustment, MDL is modified as shown in equation 4.14. They

observed that MDL is a consistent estimator of true system rank.

[ N

MDL(k) -log [ ] + Ik(2p- k) log N (4.14)
1 P 2-

In 1985, Wax and Kailath [280] apply MDL to the problem of estimating

the number of signals in a multi-channel time series. In this paper, they

generalize earlier proofs that MDL is a consistent estimator.

4.3.8 Wang's Sphericity Test

Wang's Sphericity Test is my name for the test Wang and Kaveh proposed

in their 1986 paper (equations 6 through 8)[275]. Let R = E{StSH} be the

covariance matrix of signals. Let W = ARAH + acI be estimated by W with

sample eigenvalues f 12.. , l•} where l2 > l11. The estimate d of the number

of sources d minimizes the quantity in equation 4.15.

A(d,p,k) def k(M-d)log (/(M-) +p(dk) (4.15)M ( (M-d
(i=d+,
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The quantity p(d, k) is a chosen penalty function for the overdetermination of

d. If you chose

p(d, k) = d(2M - d)

you have AIC. If you chose

p(d,k) = •d(2M -d)logk

you have MDL. Using these, Wang and Kaveh examined the probabilities of

underestimating and overestimating the number of sources for the cases of up

to two closely spaced sources in spatially white noise. Wang and Kaveh applied

their findings to narrowband systems. In a 1987 paper [276], they continued

their study and applied it to wide band systems. In both these papers they

studied the asymptotic case.

4.3.9 Finite Markov Chain Maximum Entropy Order

Estimator (FMCME)

This reviews work reported primarily in [1751. Consider a discrete-time kth-

order Markov process where each random variable xi takes on values in a finite

set A. A kth-order Markov process is one where the probability of the occur-

rence of xi depends on the preceding k samples {xi- 1 ,xi- 2,"" Xi-k}, but not

on the preceding k + 1 samples. The goal is to estimate k as accurately as

possible. To measure accuracy, the following performance criterion is used.
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Among all estimators k for which the overestimation probability Pk(k > k)

decays faster than 2 -'n (for a specified A > 0) uniformly for any Markovian

probability measure Pk of order k, find an estimator that minimizes the un-

derestimation probability Pk(k < k) uniformly for every Pk.

Let x = (x 1 . ",xn) E An be an observed sequence from the unknown

kth-order Markov process. Let si at time i specify the state of the Markov

source that governs when sample xi is drawn. Thus

si = (xi- 1 ,", Xi-k) E Ak

Let u be an arbitrary member of A, and let s be an arbitrary member of Ak.

Define the delta function

6(x, u, si,,S) 6(xU)6(sS)

where 6 is one when the arguments are equal, and 6 is zero otherwise. Let k0

be a finite integer which is an upper bound for the true order k. There are

two versions of FMCME. Version k* applies when the value of ko is known.

Version k** applies when k0 is unknown.

Version k* is the estimated order you seek.

k* = min{j : H(qj) - H(qk°) < A)

where

n(qx) q. q x(s) •q(uIs) logq•(u Is)
sEAk uEA
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n

qx'(s) de'f qE(U S

uEA

q+=(u fs) -- / q(us)/qx(s), q+k(s) > 0

S0, q" (S) = 0

Using Rissanen's MDL, the estimator k* is asymptotically equivalent to

min fj; 1MDL(J) - 1MDL(k) < A}

Version k** applies when k0 is unknown. It is based on the LZ data com-

pression algorithm described in reference [300]. The LZ code word length of

x is ULZ which is computed by the algorithm. The unknown term H(qko) in

the expression for k* is approximated by the normalized LZ code word length

function.

k** L-=f min j : H(q) - ULz(x) < A

By applying the theory of large deviations, the estimator k" has been ex-

tended in reference [176] to exponential families. This is applicable to the

Gaussian linear regression model and the autoregressive (AR) model.
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4.3.10 Coherent MDL

This approach, reported in [281], yielded two test statistics. The first is most

suitable for the detection-only problem. The second is for the joint detection

and estimation problem. In this approach the signal is considered as unknown

constants without an assumed stochastic model. The motivation for this ap-

proach is that previous approaches were not applicable to the case of a fully

correlated signal, such as occurs with a specular multipath situation. Both

approaches were proven to produce statistically consistent estimators. For the

detection problem, the MDL estimator for the number of sources is given in

equation 4.16.

kMDLB = arg min MDLB(k) (4.16)
kEf{O,...,p-1)

where

I p-k 11 1(6(k)) 1 21 o

MDLB(k) = M(p- k)log ([-- (p1
1 -- :k) + 1k(2p- k + 1)logM

(4.17)

with 0 (k) given by

0(k) =arg mn log (4.18)

The combined detection-estimation estimator of the number of sources is given

in equation 4.19.

kMDLC = arg min MDLC(k) (4.19)
kEf{O,...,p-1)



83

where

r p-k

MDLC(k) = M(p-k) log {1(p-kj k)) log M (4.20)p/--k +k2p-~ oM(.0

1 1, ( o(k))1

with ý(k) given by
p-k

6(k) = arg min l1(O(k)) (4.21)
O(k)gl)i=1

4.3.11 Maximum Likelihood (ML)

This is information taken from [81]. Assume that the desired probability

distribution p(e) belongs to a parameterized distribution family Pe indexed

by parameter vector 0 E 0. Then the maximum likelihood criterion will choose

73 from Pe by

p3 = arg max log p(x) or 0 = arg max log p(x; 0)
PEKe OEe

4 3.12 Maximum Entropy (ME)

Let the desired probability distribution p(.) belong to a set of distributions P

where

P = {p(x) I Ep[g(x)] = g)

such that p is known. The given averages are the only information available.

Then the chosen distribution is 73 where

p3 = argmax H(p) =argmax - p(x) log p(x)dxP
PEP PEP [-I I
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The reader is strongly recommended to read [81] for the remarkably clear

presentation.

Miller and Snyder [182] remark that the probability density maximizing

entropy is identical to the conditional density of the complete data given the

incomplete data. This equivalence comes from viewing the measurements as

specifying the domain over which the density is defined. The identity between

the maximum entropy and the conditional density comes from the fact that

the maximum-likelihood estimates may be obtained via a joint maximization

(minimization) of the entropy function (Kullback-Liebler divergence).

4.3.13 Criterion Autoregressive Transfer Function

The Criterion Autoregressive Transfer (CAT) function approach is reported in

[2031.

CAT(m) = I - ". + r
a2 T

where &2 is the estimator for the mean-square prediction error 0r of an infinite

order autoregressive model AR(oo). The quantity a2 in the denominator is

defined as = am' _T2 M) which is the unbiased estimator for . The value

rh minimizing CAT(m) is chosen not as the order of an autoregressive model

chosen to fit the observed time series, but as the order of an autoregressive

estimator of the infinite order autoregressive transfer function (ARTF) goo(e).
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4.3.14 Final Prediction Error Criterion (FPE)

This is taken from [631.

FPE(M) = VN 1 -

N

Rissanen [226] credits Davisson [66] with the first statement of "final pre-

diction error." S6derstr6m [250] credits Akaike with proposing FPE in 1969

in reference [3].

4.3.15 Weak Parameter Criterion (WPC)

Broersen's 1985 paper [46] suggests that weak parameters should be removed

if the squares of their estimates are less than twice the expectation for a

white noise signal. The measure 2 for significance is derived from asymptotic

conditions. WPC is based on the same principles as Mallows' Cp, FPE, and

AIC. Choose the value of M as model order which minimizes WPC(M).

WPC(M) = Sf/ (171(I - 2vj))

In this expression, vo = 0. When Yule-Walker estimates are used for model

reflection coefficients then

vj = (N - j)/[N(N + 2)]

When Burg estimates are used for model reflection coefficients then vj =

I/(N -j + 1). The quantity S• is the residual reduction by adding reflection
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M
coefficients, and it can be described by S' = H- (1 - k?) where the set {k,}Mi=1

are the reflection estimated coefficients.

4.3.16 Singular Value Plot Criterion (Rt)

This information came from [63].

N

Rt=1 k=O
N

yk kYk
k=O

where -wo < Rt :5 +1.

4.3.17 Cp Criterion

The C. criterion is part of the early training of statisticians. It is discussed in

[170][190][16][46].

Cp = (&')-'(Lp) - N + 2p

or equivalently

SSEp (n- 2p)

where &2 = MSE(xi, xxp-1 ).

The quantity p is the number of parameters in a regression model. Lp=

SSEp is the residual sum of squares. N is the number of samples. The quantity

&2 is the estimate of a02 based on a model that includes all the parameters.

The number P - 1 is the number of all the potential independent variables,

assumed to have been carefully chosen to yield an unbiased estimate &2 of
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o2. The notations SSEp and MSE are common in the regression and linear

models statistical literature.

4.3.18 Bayesian Quickest Decision

This approach includes a penalty on the classical Bayes wrong decision cost

function for delays in detecting a signal. The minimization of the average risk

function leads to the optimum decision regions. A more detailed description

of this approach would essentially repeat the original paper, so the interested

reader is referred to original works by Bouvet [41]. This paper should be read

together with Pelkowitz and Schwartz' 1987 paper [206).

4.3.19 Quickest Detection Sample Size

This method was proposed in [2061. The goal is to find the sample size M that

minimizes the mean time to detection MD for detecting a sudden change in the

statistics of an observed process for a given mean time between false alarms

MF = (False Alarm Rate)- 1 . Let 0 be the single-sample signal-to-noise ratio.

This paper shows that for small # and large MF that the optimum sample

size M and the system performance depends on MF and # only through the

product #V/M-F. Graphs are provided in the paper for choosing parameters

for the solution.
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Let

R = MD = mean number of samples to detection
MF mean number of samples between false alarms

and let A be the detection threshold which is a function of the given test

statistic, the data sample size M, and probability of false alarn a. Call R the

average sample size ratio. Let the stationary noise process have mean po and

variance ao. Let F(x) be the cumulative distribution function of the received

random process, and let 4(x) = 1 - F(x). Let ro(m) be the normalized

autocorrelation function of the stationary noise defined by

1
ro(m) = -2E {[Ixo(n) - po] [xo(n + m) - yo]) = ro(-m)

and let

L L

7o - ro(m) =1 + 2 Z: ro(m)
m---L rn-=

Under the conditions that signal strength a --+ 0, signal-to-noise ratio

fl(p) --* 0, mean number of samples between false alarms MF -- oo, and

P(p)V/M-F is some fixed constant Te, then the limiting values of the average

sampie size ratio R and detection threshold A are given by

R(a,, F) a I + h (a; T mfa-)

and

A(a; MF) = aMFIto + 4- 1(a)aoV •oaMF
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4.3.20 Likelihood Ratio Test

S6derstr6m [2501 gives the likelihood ratio test statistic as equation 4.22 for

testing between model M1 and model M2. Model M1 is chosen if )A is close to

1.

sup L(O, A)
A = 0,A;OEM, (4.22)

sup L(O, A)
O,A;OEM 2

Wilks [289] was the first to propose this statistic in 1938.

4.3.21 Guttman Lower Bound Criterion

This criterion, discussed in [111][99], recommends retaining all of the principal

components that contribute more total variance than does the typical nor-

malized time series. Richman [222] notes that it is safer to choose too many

components than to choose fewer components than are suggested by such cri-

teria. (Note that in the adaptive filtering context, we know that choosing a

model order that is too large can lead to an unstable filter.)

4.3.22 Other Significance Tests

Horel [111] cites other significance tests which have escaped the electrical engi-

neering literature. These tests are given in [37][201][194][191]. Testing of com-

plex principal components is a part of geophysical data analysis. S6derstrhm

[250] discusses the use of the F-test for comparing two models.
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4.4 Comparisons and Evaluations

Hipel 1107] reported on the use of AIC in the context of geophysical time series.

This is a broad ranging paper with an extensive bibliography. Hipel states the

AIC formula, discusses its use in ARMA models for order determination,

discusses model construction, alternatives to AIC, and some disadvantages of

AIC. Alternatives include the maximum x2 method, Parzen's CAT, Gray's

D-statistic, Mallows' C0p statistic, and Sawa's BIC statistic. He also discusses

Akaike's MAICE and final prediction error (FPE) technique.

Some disadvantages of the AIC and the other automatic selection criteria

are that an overall statistic tends to cover up much of the information in the

data and the practitioner may lose his sense of feeling for the inherent char-

acteristics of the time series if he bases his decisions solely upon one statistic.

However, when MAICE is used in conjunction with the three stages of model

construction, there is no doubt that MAICE greatly improves the modeling

process.

Sdderstr~m [250] observed that AIC and FPE are asymptotically equiva-

lent to an F-test. Kundu [158] compared simulation results of several information-

theoretic criterion (AIC, MDL, and EDC) and Cross Validation. He observed

that AIC and Cross Validation perform quite well for small samples and large

error standard deviation, and noted that the small sample properties of MDL

and EDC have not been investigated fully. When the radian frequency of two
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signals are close, then the Cross Validation approach performs better than any

other method.

Wang and Kaveh [275] compared the asymptotic performance of AIC and

MDL as part of a study of a generalized information theoretic order deter-

mination method that subsumes those two methods as applied to the case of

an array of M sensors. They concluded for cases of up to two closely spaced

sources in spatially white noise, that Rissanen's MDL penalty function was

shown to result in a larger probability of underestimating but smaller proba-

bility of overestimating the number of sources in comparison to Akaike's AIC

penalty function.

Zhang, Wong, Yip, and Reilly [296] did a statistical theory and simulation

comparison of AIC and MDL. They concluded that AIC is more efficient

in reducing the probability of missing a detection than the MDL criterion.

On the other hand, for a moderate number of snapshots, the probability of

false alarm using the MDL criterion approaches zero whereas that for the

AIC remains constant. The MDL criterion is more efficient in reducing the

probability of false alarm than the AIC. The choice of the penalty term by

AIC emphasizes better performance under relatively lower SNR or smaller

number of snapshots (or both) at the expense of being inconsistent. The

penalty term adopted by MDL emphasizes the performance when the number

of snapshots is large, sacrificing the performance at relatively lower SNR or
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smaller number of snapshots (or both). They cite Chen, Reilly, and Wong [54]

to remark that the penalty function can be adjusted to obtain a criterion whose

performance best satisfies the chosen goal. The choice depends on the number

of snapshots and the signal-to-noise ratio. Under low SNR, both AIC and

MDL necessitate a large number of snapshots. The authors show in another

paper that the performance of both criteria can be improved by choosing a

more appropriate log-likelihood function [292].

Cremona and Brandon [63] remark that statistical tests (X2), AIC crite-

rion, and FPE criterion tests are restricted to recursive minimum prediction

error methods. Independent of their good estimation, they are statistically

based: they are partially subjective techniques because they use the asymp-

totic property of the estimates on which to base the model order estimation

strategy.

In this chapter, an abstract setting via the Lebesgue-Radon-Nikodym deriva-

tive was provided to illustrate that, collectively, order determination and esti-

mation are pieces of the same task of locating or discovering the distribution

that best describes the sampled data. Most of the examples of methods for

order estimation are variations of information-theoretic approaches. There are

also approaches from the points of view of coding theory, maximum likelihood,

maximum entropy, and classical regression methods of statistics. included in

this review are reviews of comparisons among techniques.
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The approach of this thesis is a classical Neyman-Pearson hypothesis test-

ing approach. It requires knowledge of the density functions of distributions

of interest and specification of the acceptable chance of error of a test. The

mathematics for the small sample complex principal components analysis, the

simplest of the multivariate cases relying on sampling from a complex vec-

tor normal distribution, has not previously been worked out. Many necessary

pieces have. The next chapter reviews what I have learned about the existing

background material.
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Chapter 5

PREVIOUS WORK

The purpose of this chapter is to present material I have found which provides

the necessary foundations for the development of the small sample complex

principal components analysis approach for order determination. Three main

areas will be reviewed: array processing, statistics, and mathematics.

Traditional lines of demarcation between disciplines become very inappro-

priate when studying the order identification problem in array processing.

Motivated by the acoustic signal processing goals, the appropriate locus of

solutions lie beyond the traditional mathematical training of engineers and

statisticians, and is in research areas by specialists in mathematics and statis-

tics. The history of development of the necessary mathematics reveals that

much of the important mathematical theory has been developed by applica-

tion scientists. What is considered pure or abstract mathematics by most

engineers and statisticians truly forms the working set of knowledge necessary

for making headway in the solution of practical array processing problems.

With this in mind, I have rather artificially clustered historical work as

follows. Under the title of "array processing" I have collected works drawn

primarily from the acoustics, ocean engineering, and electrical engineering lit-

erature. These works deal primarily with exploration of different principles

and algorithms. Material collected under the heading of "statistics" is further
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partitioned into "eigenvalue distribution and testing" and "complex statis-

tics other than eigenvalue testing". The set called "eigenvalue distribution

and testing" discusses work done with respect to eigenvalues of both real and

complex Wishart matrices. It focuses on the form of the test statistics, the dis-

tributions of the eigenvalues, and the distributions of the test statistics. The

material collected under "complex statistics other than eigenvalue testing"

refers to the body of literature that forms the supporting background theory

for eventually developing the necessary tests and test statistic distributions.

Under the final grouping of "mathematics" I have included material related to

the development of zonal polynomials and hypergeometric functions of matrix

argument which is presented independent of the context of statistics. This is

necessarily set in the context of group representation theory which provides

the foundation for these functions.

Not mentioned, yet present in the background, is the vast body of knowl-

edge collected under the subject of Lie theory. There is some artificiality here

because much of the ancestral work is by physicists and statisticians seeking

answers to the eigenvalue testing problem. There is a lot of interplay between

these groupings. With just a little exposure to the literature, one can see that

the overlap is tremendous.
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5.1 Array Processing

A well written brief tutorial review of beamforming methods was presented

by Johnson [1251 as an invited paper for ihe Proceedings of the IEEE, as

pointed out in the introduction. One of the methods he discussed was that of

the Maximum Likelihood Method (MLM). He references three articles on the

subject [76][51][52]. The approach is to find the steering vector a which yields

the minimum beam energy aHRa subject to the constraint that aHb = 1, where

b represents an ideal plane wave corresponding to the desired direction-of-look

and R represents the spatial correlation matrix. The solution is a = bHR-lb"

Another approach is the eigenspace approach. The idea of an eigenspace

approach to signal processing is not new. In particular, the principal compo-

nent analysis approach is now considered classic. Priestley et al. [210] dis-

cussed the application of principal component analysis and factor analysis to

multivariate systems for the purpose of dimensionality reduction. They chose

as their goal to obtain the best r-dimensional representation of the system

output vector Y(t). Their method is as follows. Apply the discrete Fourier

transform to Y(t), obtaining Y(w), and then obtain eigenvalue decomposi-

tions of the resulting frequency-dependent covariance matrices. Process Y(w)

with the eigenvectors corresponding to the r largest eigenvalues, obtaining r-
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dimensional frequency domain principal components Y, (w). The r-dimensional

time domain output Y,(t) is obtained by an inverse discrete Fourier transform.

The authors point out that there may be an aliasing problem, as discussed

by Haggan and Priestly [100] who successfully applied the method to a real

system. The issue of order estimation was not discussed.

Schmidt discussed the MUSIC (MUltiple Signal Classification) theory in

March 1986 [238]. Consider a sonar array with m elements. Let the noise at

these elements be given by the column vector w where wr = (w, .- , Wn).

Let d be the number of signals {fi}il, independent of the noise. Denote

the set of signals by the column vector f defined by fT = (fl,' ',fd). Each

signal fi has its own beamformer parameter index (which we usually associate

with direction of arrival O0). The transfer function of the beamformer on the

set of signals is given by the matrix A = [a(0 1),- - " ,a(0d)] where each a(Oi)

describes the response of the beamformer to a signal coming from direction 0i.

It is assumed that the beamformer function a(O) is known for all 0. For this

reason, for a collection of specific desired look-directions, the matrix A defines

a set of vectors that form a basis (in the sense of linear algebra) for the space

in which signals processed by those beams can be described. Therefore, we

can use matrix A to form an orthonormal basis for the space containing the

signals. All of the signals and some of the noise processed by the beamformer

will be contained in this space. The orthogonal complement of this space will
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contain only noise. The beamformer output of signal plus noise is given by

the column vector x = Af + w. Let the signal covariance matrix P be defined

by P F I {ffH}, and let the noise covariance matrix A2S0 be defined by

A2S0 = £ {wwH}. (If you compare this to Schmidt's paper, you will notice

I use A as a singular value throughout, and thus A2 is the eigenvalue.) The

expected value of the covariance matrix of the beamformer output is given by

S = APAH + A 2S0 . The eigenvalues of S and of (S - A'.iSo) differ by Am2.
2

The multiplicity of Am. in matrix S or the multiplicity of the zero eigenvalue

in (S - A' SO) tells us the dimension of 11he space containing only noise, and

therefore we also know the dimension of the space containing the signals. The

problem is stated in terms of examining the roots of the characteristic equation

det (APAH) e (S _ A2ýS 0 ) = o) = dt n

The paired sets of eigenvalues and eigenvectors (A), qj)so are called eigenso-

lutions of S with respect to So. Another terminology used is that these are

eigensolutions of S in the metric of So. Schmidt notes that the eigensolutions

satisfy the relationships Sqi = ASoqi and APAHq. = (A? - A .,)SOqj. So, the

goal is to construct a test to see how many of the smallest {fA?} are equal.

Various authors have chosen different approaches to identifying this multiplic-

ity, including the selection of the estimator of APAH upon which to base tests.

Note that the maximum dimension of APAH is min(d, m). The dimension can

be reduced by singularity of P.
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Kaveh and Barabell [130] credit Kumaresan and Tufts [156] with the Mini-

mum Norm method. Kumaresan and Tufts considered a line array. Kumaresan

and Tufts' description is repeated here. The author's variables are renamed

to make comparison with the MUSIC algorithm easier. Let the number of

elements of this array be m. Assume a known number of sources, which we

will call d. Let the m x m signal-plus-noise covariance matrix for the beam-

former output S be estimated by R. Let R have the eigenvalue decomposition

R = PL2PH corresponding to the eigenvalue decomposition of S given by

S = QA2QH. Let a(Ok) = ak be the direction vector associated with source

number k having direction-of-arrival at the array at an angle related to Ok. The

problem is to estimate ak. If a vector b = [b1,..', bml has the property that

aHb = 0 for each source k, then a polynomial D(z) = Z,=I bkz-k+l has roots

at values of z corresponding to the {Ok}. The m - d + 1 eigenvectors {qk}•1+

of S corresponding to the noise eigenvalues {,A,}•+ have this property. This

is approximately true for the sample eigenvectors {Pk}d+j computed from R

corresponding to the noise subspace.

The goal is to find b spanning the whole noise subspace of R. The source of

the name "Minimum-Norm" comes from the following criterion. Its Euclidean

length (its norm) is required to be minimized. To make the solution unique,

the first elenicnt is constrained to be unity.
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Partition the sample eigenvectors P = [Ps, PN] into the set

gT

Ps = (PI, ,pd) =

corresponding to the signal subspace, and

CT
PN = (Pd+l,',Pm)= []SP[N]

corresponding to the noise subspace. The vectors gT and cT are the top rows of

their respective matrices. The matrices P[sM and P[N are merely the remainder

of their respective partitions. The solution is given by

b -

where the top element of b is unity.

Their theory is developed based on partitioning the eigenstructure of the

underlying covariance matrix of the beamformer output (not the sample co-

variance matrix). The discussion implied that the simulated sample covariance

matrix was decomposed. The number of signals was assumed.

Kaveh and Barabell [130] evaluated the asymptotic statistical performance

of the MUSIC algorithm and the Minimum Norm algorithms in April 1986

against closely spaced narrowband plane waves. The Minimum Norm null-

spectrum had a smaller bias at a source angle compared to the MUSIC null-

spectrum. In a simulation, a fixed resolution threshold was achieved at a
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lower signal-to-noise ratio for the Minimum Norm method than by MUSIC.

Moghaddamjoo reported simulation results in [184]. It was shown that if

at least one signal eigenvalu, is close to the noise-related eigenvalues, then

the associated eigenvector will have significant errors which translate into a

significant bearing error. This is to be expected for a low signal-to-noise ratio

case.

Wax, Shan, and Kailath [279] discussed eigenstructure methods for beam-

forming for both the narrowband and wide band cases. They specialized their

treatment to a line array of equally spaced sensors.

Each of the m sensors feeds a delay line with p registers. Each independent

sample thus contains mp pieces of data. The number of sources d is unknown.

Under Gaussian assumptions, the statistic for testing

k 2 1 ... = 2

is given by Anderson's likelihood ratio given here as equation 5.1 where the

{1?}m' are the eigenvalues of the sample covariance matrix. Wax et al. dis-

cussed the application of the asymptotic case for the statistic distribution.

N
mp 12n ?

Qk =i=k+l _ (5.1)

Scharf [237] proposed looking at the quantity he calls divergence, which

is the difference between the expected values of the log likelihood ratio test



102

statistic under the null and alternate hypotheses. Based on this, he points out

that it is the sum A' +A- 2 = 2 cosh(2 In A.) which determines the contribution

of an eigenvalue to divergence, not the value of A2. He presents an algorithm

that selects the dominant eigenvalues. He also notes that each eigenvalue

satisfies the generalized eigen problem (R1 - A2 RO)x = 0 where Ro is the

covariance matrix under the null hypothesis and R1 is the covariance under

the alternative. This is not restricted to the case of R1 = Ro + R. where R, is

the signal covariance; however, that is the usual assignment.

Friedlander presented an eigenspace approach to interference cancellation

in his nicely written December 1988 paper [88]. The key to his approach

is constructing a weighting vector W such that W lies in the signal sub-

space and is orthogonal to the interference component of the array manifold.

The array manifold a(-f) is defined to be that portion of the factorization of

the array response function which is due to the geometry of the array (func-

tion of the time delay from each array element to a reference point) and the

steering direction -y. The signal subspace is defined to be the set of vec-

tors in the array manifold associated with each signal and interference source,

[a(yuignal), a(Yaouce2),''.. , a(soucep)]. This same subspace is also spanned by

the eigenvectors associated with the largest eigenvalues of the covariance ma-

trix of the received signals.

The innovation of this paper is finding a way around having to know a(y)
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of each interfering source. To overcome this, he considers a cost function

based on the spectral characteristics of the desired signal. The method will

not work directly where there is a coherent multipath present, but a possible

modification is proposed. Although his paper is written in terms of eigenvalue

decompositions, he makes it clear that use of the singular value decomposition

is a related idea.

Fuchs [89] also discusses an eigenspace approach in that same journal is-

sue. He bases his approach on a matrix perturbation analysis. Lee and Wen-

grovitz [163] studied the ability of MUSIC to separaue closely spaced sources

when a beamforming preprocessor is used. It was shown that this technique,

called Beamspace MUSIC, performed better than the Minimum Norm tech-

nique. The key is to reduce the noise subspace. They also suggested that a

beamforming preprocessor improves the performance of the Minimum Norm

algorithm.

5.2 Statistics

5.2.1 Eigenvalue Distributions and Testing

In statistics, the problem being considered is known as the part of the Ex-

act Principal Components Analysis (PCA) problem for the complex variables

case. The inner product of a data vector with the k"h eigenvector of the sample
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covariance matrix is the kth Principal Component. The sample variance of the

kth principal component is the corresponding sample eigenvalue l2. Eigenval-

ues go by several names in the literature. They are also known as characteristic

roots and as latent roots. A very important fact [197] is that the eigenvalues

of a sample covariance matrix are all different, with probability 1. A won-

derful introduction to Principal Component Analysis is given in Chapter 8 of

reference [186]. Sections of special interest are 8.3 (geometrical meaning of

principal components) and 8.7 (sampling properties of principal components).

In geophysics and meteorology, principal components are known as Em-

pirical Orthogonal Functions. A solution to the problem consists of several

parts. The first and easiest part is the specification of test statistics. The

next part is obtaining the distribution of the test statistics. Closed form so-

lutions are desired but not always obtainable. Sometimes they are obtainable

with great effort or clever tricks. Often the density of a desired distribution is

the marginal density of some obtainable joint distribution that is difficult to

integrate.

Von Storch and Hannosch6ck [261] discussed estimating principal compo-

nents in the small sample case in the context of meteorology. Their conclusions

are important enough to repeat.

1. The sample eigenvalue P2 is a considerably biased estimator of the true

eigenvalue A'. The bias is positive for the largest A2; the bias is negative for
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the smallest eigenvalue. It is of the order of 1/m where m is the number of

independent samples. The variances of 12 is the order of 1/m too.

2. By means of correction methods, unbiased eigenvalue estimators are

constructed. However, the decrease of the bias is accompanied by an increase

of the estimator's variance. For the largest eigenvalue, at least, the Jackknife

yields favorable results.

3. The following comments are in the context of estimated second moments

of generalized Fourier coefficients of a fixed set of principal components. On

average, for small i (large i) the sample eigenvalue I? will overestimate (un-

derestimate) the variance expressed by the corresponding principal component

considerably. The covariances are generally not negligible. This means that

the independence of parameter covariance matrix eigenvector coefficients can-

not be transferred to principal component coefficients derived from the sample

covariance matrix.

Kshirsagar [154] (p. 58) gives a fascinating review of the history of the

derivation of the real Wishart distribution. He says the case of p = 2 was first

derived by Fisher in 1915 [831, and that Wishart did it for p = n in 1928 [290].

It was in 1935 (almost yesterday, when my father was 17) that Fisher published

his paper [84] on the density and cumulative distribution functions for the uni-

variate X2 and t distribution. In 1937, Hoel [108] derived approximations for

the distributions for the generalized variance (the determinant of the covari-
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ance matrix), one for the case when samples are not too small, and the other

for large samples. Two early papers on principal components are by Hotelling

[113] in 1933 and by Girshick [90] in 1936, both of which are referenced in one

of the early works in the distribution of sample eigenvalues by Girshick [91] in

1939. In this 1939 paper, he derives the asymptotic distribution for the sample

eigenvalues of a real Wishart matrix, as well as other quantities. Let aij be

the population covariance between random variables xi and xj in multivariate

normal random vector xw = (xi,..' , xp). The fundamental equation derived

by Girshick in this paper is his equation (3.11),

£{dajdo'km } = 1 (OikO'jm + O'imrOjk)

From this equation, he produces his other results. Specifically, the variance of

the sample eigenvalue l1 is given by var(l2) = •A4 where n is the number of

samples from which the estimate is derived. (When you compare the formulae

written here, remember that in this paper, the {lk}1 are estimates of the

singular values {Ak}P.) The set of quantities

12 2 P

0k- A 12 -
Crl kV -n 1

is distributed asymptotically Np(0, Ip). By a clever insight, Girshick considers

the quantity log l1 as a way to eliminate the population eigenvalue A2. By

applying a Taylor series expansion and ignoring higher order terms, he finds

the asymptotic variance of log(/2), which is given by var(log l2) = •. As
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an aside, Girshick uses the following convention we have come to associate

with Einstein. A repeated subscript in the same term stands for summation.

If repeated subscripts appearing in a term are not to be summed, they are

placed in brackets following the expression in which they appear.

Lawley [161] studied tests involving the latent roots of sample covariance

and correlation matrices in 1956. His interest was in those cases where the

effects of the k largest latent roots have been removed, and he tested the

hypothesis that the re ining roots are equal. The Principal Components

Analysis problem for the raw covariance matrix was solved by T. W. Ander-

son in his 1963 paper [24] which has become a classic paper in the statistics

literature. He gives a test of significance on eigenvalues for the large sample

case where the data is sampled from the real multivariate normal distribu-

tion. In the immediately following article, Lawley [162] extended Anderson's

result to test a set of correlation coefficients for equality. It was solved for the

large sample complex multivariate normal distribution case by R. P. Gupta

[98] in 1965 who purposefully paralleled Anderson's derivations and used the

same notation as closely as possible. Work on the asymptotic cases has been

continued by Tyler [269][270].

The solution for the Exact PCA problem was considered intractable for a

long time, as it is often true that small sample cases are much more difficult

than the corresponding asymptotic cases. That is why the asymptotic cases
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are studied. This statement provides an opportunity to establish an important

and easy to miss point. The label "asymptotic" is ambiguous because it is

used in two different ways in the technical literature. The commonly assumed

meaning is the large sample case, obtained by letting the number of samples

tend to infinity. The second meaning is related to the number of terms carried

in the expansion of an exact or approximation expression. In this second case,

a small number of terms may yield a more accurate approximation than a

large number of terms. This point is nicely discussed in Keener's text [131]

(p. 425) as follows. He defines f,(z) to be asymptotic to f(z) if

Jim I Z' (f.(Z) - f z)) I= 0

for a fixed value of n. This concept has nothing at all to do with convergence

since finding a good approximation does not require taking more terms. A

series can be asymptotic even though it may be divergent. In fact, asymptotic

series are often divergent, so taking more terms is not simply more work, it is

actually damaging.

Progress in attacking the small sample cases was motivated by two seminal

works by James [118][120]. In 1960, he found the sampling distributions of the

eigenvalues of the covariance matrix from a sample of the real multivariate

normal distribution. He relied on representation theory of the linear group.

In 1964, James extended his results to include distributions derived from the

complex normal distribution, as well as other forms that are related to the
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multivariate normal distribution, lie developed his results through the use of

zonal polynomials of matrix argument, and expressed his results in terms of

hypergeometric functions of one and two matrix arguments. He did his work

for the case of real variables. Based on similarity of forms, he summarily wrote

down the results for the complex case without proof. In 1966, James [121]

applied his work to principal components in the case of a sample covariance

matrix of real variables. An interesting observation he made concerns the effect

of extreme roots on the likelihood ratio of other adjacent roots. Suppose that

the ratios of the root P to the adjacent roots 12, 1 +1 are both much less than

1 or both much greater than 1. Then the jth root influences the likelihood of

the other two by a factor

((I?- - 1)(J+

Muirhead 11871 elaborated on James' work, collecting many of the ideas

into the setting of studying distribution theory for real multivariate analy-

sis. Muirhead's book is the natural descendent of Anderson's classic text.

Muirhead produced the first comprehensive text on multivariate distribution

theory incorporating zonal polynomials, hypergeometric functions of matrix

argument, and application of exterior products. The importance of this devel-

opment is its application to the derivation of noncentral distributions needed

to evaluate the power of test statistics.

Krishnaiah was very active in developing exact and asymptotic distribu-
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tions of eigenvalues and their tests based on both real and complex Wishart

matrices, often expressing results in terms of zonal polynomials or using zonal

polynomials in his proofs. Much of this work was done through the Aerospace

Research Laboratories of the United States Air Force at Wright-Patterson Air

Force Base. In 1969, Krishnaiah and Waikar [144] reported on tests of eigen-

values from a real Wishart matrix based on Roy's union-intersection principle.

Effectively, the null hypothesis is

H : A'1 = Ai='= A 2

Five different alternative hypotheses were derived.

A, : A2 > A'] > .. > A 2

A2: (A2 > 2) U (A > 2) u... u (A21 > A 2 )

A3 : (A,2 > A ) u (A > A ) U... u(Al2 > A )
A4,: (A2 :A A2) u (A] 2/ -2) U... u 2 5,_ A2 )

As: (A1l > A2 (Al > A3 u.. (Al > A) (A2 > A3 U . (A,,_, > AP)

The joint densities for these tests were provided for the case of the real

Wishart distribution, expressed in terms of the hypergeometric function of two

matrix variables and in terms of normalized zonal polynomials. One of these is

generalized in Muirhead's derivation [187] of his Theorem 3.2.20. The different

cases are for different test statistics and alternative hypotheses. Krishnaiah

and Waikar also work out the asymptotic cases (large sample size). Three

months later, Krishnaiah and Waikar [145] further developed the test against



111

alternative A5 by finding the density function for the test statistic.

In 1970, Krishnaiah and Chang [146] reported on the exact distribution of

the smallest root of the real Wishart distribution Wp(n, nIp) where they require

the number (n - p - 1)/2 to be an integer. They accomplish this by changing

variables from the sample eigenvalues (l,..2.,l) to (gj,...,gpy-,Op) where

21
= I and 0P = l•, and then integrating out the g;. The result is expressed in

terms of zonal polynomials. Three months later, Krishnaiah and Waikar [147]

reported on the cumulative distribution function of the intermediate eigenvalue

l. of the real Wishart matrix distributed as Wp(n, Ip). The results are reported

in an integral form. They assume l1 is known, and they look at

Lemma 2.1 of [147] is referenced in later reports. In a separate simultaneous

report [148], they show how to evaluate

P {X, < 12< 12<X2

for the real variables case. This is expressed as the sum of four probabilities

that are characterized by the details of the end points of evaluation. The

message is to consider the different combinations suggested by the set of in-

equalities given in equation 5.2.

<r• < (5.2)
X, X2
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Two months later, Waikar, Chang, and Krishnaiah [272] extended the work

to find the joint density function of any few unordered roots of a noncentral

complex Wishart matrix. Without loss of generality, they consider the first r

roots. The case for the central distribution was worked out by Wigner [286).

Waikar et al. used assumptions on the structure of matrix A that are different

than those based on Goodman's work in relating complex and real Gaussian

distributions. Thus, some care is needed in using results by one author in the

results of another author.

In the Fall of 1971, Krishnaiah and Waikar [149] reported on thtc distribu-

tion of arbitrary consecutive ordered roots of the real Wishart matrix. This

work includes the marginal density function and the cumulative distribution

functions. Results are reported in integral form. In 1972, Davis [65] reported

on the ratios of individual eigenvalues to the trace of a Wishart matrix. See

also the work by Khatri [139] on the exact finite series distribution of the

smallest or the largest eigenvalue. In that same year, Waikar, Chang and Kr-

ishnaiah [273] derived expressions for the joint densities of any few unordered

roots of the noncentral complex Wishart matrix (as well as for three other

matrices).

In 1973, Krishnaiah [150] continued the study of eigenvalues of complex

random matrices by deriving the exact distributions of some test statistics

based on eigenvalues of the matrix Z = A(A + B)- 1 where A - CWp(n, EI)
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and B -CWp(m, E2). Krishnaiah computed the joint density function of

, -1.. 17-1 leaving the result as an integral and a product of sums of

normalized zonal polynomials. He likewise computed the joint density function

where the smallest sample eigenvalue 12 is replaced by the sum of the sample

eigenvalues in the denominators.

In 1974, Krishnaiah and Shuurmann [1511 derived expressions for the distri-

butions of the ratios of the intermediate roots to the trace of the real Wishart

matrix, and the intermediate roots of the real Wishart matrix. They obtained

a relationship between the Laplace transformations of the ratios of the indi-

vidual roots to the trace of the complex Wishart matrix CWP(I+-- , I2) and

the distributions of the individual roots of this matrix. Using this relation-

ship and expressions for the densities of the individual roots of the complex

Wishart matrix, they obtained expressions for the distributions of the ratios

of the individual roots to the trace of that matrix.

In 1976, Krishnaiah [152](pp. 26-27) proposed two more tests of interest

when you know in advance that A? # Aý. The first test is for Hij : A? < d A

for d > 1 against the alternative Aij: A? > Aý where i > j. Hypothesis Hij is

not rejected if l?/d l < c, where

Pr{12/12 <dc,, 1 '\2 <dA2}=(1 'a)

The second test is for Hij :A? - A < d for d > 0 against the alternative
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Aij: A? - V > d. Hypothesis Hij is not rejected if (1? - P - d) < c, where

Pr{/f -/1 <d+c, I A2 -A2 <d} = (1-a)

The untimely and premature death due to cancer of the great statistician

Paruchuri R. Krishnaiah on 01 August 1987 in Pittsburgh, Pennsylvania in-

terrupted brilliant progress on these difficult problems.

In 1984, Jolicoeur (126] proposed a test about the direction of multivariate

normal principal axes for the small sample case. Let S be a real-valued sample

covariance matrix with normalized eigenvectors r having row vectors 7i as the

direction cosines of the ih principal axes. Then the statistic

is distributed according to the F distribution with p - 1 and N - p degrees of

freedom, F(p-1,N-p).

Konstantinides and Yao [142] reviewed criteria used to test the effective

rank t < n of an observed real matrix X by using the singular values. They

critiqued the following test criteria and performed a perturbation analysis on

the real matrix model X = A + E.

12 > 122 > ... > I12 > b, >! 12+ > "". > 12(531-2- 1~6~ 2 >

12 > > 12 (54)

12t > l+, (5.5)
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t+, + 12 +..+ 12 < b4(58
l++t+2 +"+fnt (5.6)

12 + 12 +.. + It
1 2> b (5.7)2• 12l + .. + Inn

Konstantinides and Yao also reported the following interesting theorems.

Theorem 3 Let A be any real-valued m x n matrix A = (ax,.." ,aa). Let

IIAIIE be the Frobenious norm of A defined as the square root of the sum of

the squares of each element of A. Let the 2-norm IIAil2 = max (l ) where

the 2-norm of x is the square root of the sum of the squares of the elements of

vector x. Then the following inequalities are valid: max I aij 1: max Ilaj,12 <

AIIA112 IIAIIF <• V'nIlaj 12 \/ml---- max Iaj 1.

Theorem 4 Let A, B, and E be m x n real-valued matrices with B = A + E.

Denote their respective singular values by a,, Pi, and ci where 1 < i < k <

min(m, n), each set labeled in non-increasing order. Then I 13i - ai 1 • =

IIEJl2 where 1 < i < k.

Theorem 5 Let A, B, and E be m x n matrices with the 2-norm of E denoted

by El. if ar > 24i, then /3> eI -> 0T+,, and B is said to have effective rank of

r.

Horel presented a good practical review of complex principal component

analysis [111]. One important property of complex principal component (CPC)

analysis in the time domain mentioned is that since correlations between time



116

series are heavily weighted by periods during which the amplitudes of the time

series are large, more weight is given to sharp transitions and noisy spikes than

to periods during which the signal varies slowly. The Hilbert transform does

not act as a low-pass filter upon the data. It contains as much energy due to

noise as the original data and it may redistribute the noise to different parts

of the time series. To minimize this problem, the filter weights W(w) can be

chosen so as to apply a low-pass filter to both the original data and its Hilbert

transform prior to further computations.

The phase of the principal components is ambiguous. This indeterminacy

becomes important when the researcher wishes to compare complex princi-

pal components obtained from independent data sets. In such cases, it is

impossible to determine lead-lag relationships between the independent com-

plex principal components by simply computing their cross-correlation since

the phase of each complex principal component is known only to within an

arbitrary constant.

In loiking at time series, the real and imaginary parts of complex principal

components are not Hilbert transforms of one another. They do not necessarily

explain the same amount of variance in each frequency band and thus the real

part of the complex principal components does not contain all the relevant

information. Frequency domain principal component analysis does not suffer

from this problem because in that approach the principal component is a real
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time series.

Wong, Zhang, Reilly, and Yip proposed new estimates for sample eigen-

values in 1990. They account for the bias in the estimation of eigenvalues

from looking at the eigenvalues of the sample covariance matrix. Let {JA},

be the revised estimates of the corresponding population eigenvalues. These

are computed in equation 5.8, with the estimated variance given in equation

5.9.

52 =12 k ~ -M-k i2&a2ýM ~ ~ .M A :--, N (\2 -a2)

i•m

where (5.8)

Mn = 1.,k

&2 1 12+_1 u
M-k 1 N+• = --- (9

i=k+l i= ti -Ov

The good idea is that these provide a correction to the estimated eigenval-

ues that accounts for the effects of other eigenvalues. On the other hand, these

estimates no longer obey the simpler joint distribution which makes finding

the distribution of relevant test statistics more difficult. The desirability of

making these corrections depends on what you want to use the answer for.

The point here is that the {f1} might be biased estimates of the underlying

population eigenvalues, but even more importantly they are statistics whose

distribution we know.
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5.2.2 Complex Statistics Other than Eigenvalue Test-

ing

Development of joint distributions of sample eigenvalues and related test statis-

tics requires a supporting body of distributional results. The literature regard-

ing complex multivariate statistics is sparse and isolated.

The study of statistics of complex variables is still so young that funda-

mental results are still in dispute. Some of the results I need simply are not

in the many references I consulted. For this reason, I have undertaken a sys-

tematic development of fundamental properties and distributions related to

complex multivariate random variables. This section reviews the literature I

have found on the subject.

Working with complex variables in the context of statistics dates at least

as early as the renaissance of statistics in the 1930s. Ingham published a paper

in 1933 [114] evaluating the integral

1 )p(p+l)/2 xp-
1\-•rJ I fR~p+1)12 exp[-i tr(CT)][det(A - iT)]k(dT)

where A is positive definite real and C and T are real symmetric. The uni-

variate complex Gaussian distribution was first introduced by Wooding [293]

in 1956. He looked at the complex Fourier series

z(t) = '(aj - ibj)exp[iOj(t)]
3

where Oi, aj, and bj are real-valued coefficients. He followed some of the
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work previously done with pre-envelopes and analytic signals by S. 0. Rice

[220][2211. This work was extended by Dugundji [70] in 1958. Wooding applied

the Hilbert transform to a real signal x(t) and formed a complex variable

z(t) = x(t) + ii(t)

The Hilbert transform is defined by

;i(t) = 1-P.v V0x(t - a) da
7r - a

with its inverse given by

X(t) = 1P.V. (t + 0)-d-

The P.V. before the integral sign signifies that the Cauchy Principal Value is

used in doing the evaluation. Some references use a bar through the integral

instead of writing P.V.. As acknowledged by Wooding, the notion of a stochas-

tic process as being complex Gaussian was not new. Root and Pitcher [227]

mention it in their paper in 1955.

The next major contributor to the theory of the multivariate complex nor-

mal distribution and related statistics was N. R. Goodman [92][93]. Goodman

demonstrated the relationships between complex and real vector variables. He

gave explicit expression to how various properties are related. He showed that

multiplication of complex scalars of the form z = x + iy is the same as mul-

tiplication of matrices of the form . If you replace each element
y x
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in an n x n complex matrix with the corresponding 2 x 2 matrix, you then

have a real-valued 2n x 2n matrix that acts the same under multiplication and

addition as the complex matrix, except that much more computational effort

is required. He proved other algebraic results as well. In statistics, he stated

the density function of the zero mean vector complex normal distribution with

covariance matrix E and derived its characteristic function. He derived the

density function for the central complex Wishart distribution and the char-

acteristic function of a distribution related to the central complex Wishart

distribution. He also derived the density function of the Hermitian square

root upper triangular matrix of a Wishart matrix, where W = THT. In the

companion paper, Goodman derived the distribution of det(W).

In reference [135], Khatri cited Wishart's 1948 effort in Biometrika to cat-

alog many different methods of deriving the real Wishart distribution. Khatri

said these methods use different kinds of tools like transformations, direct in-

tegration, characteristic function, and inversion theorem, geometrical method,

induction, rectangular coordinates, random orthogonal transformations, or-

thogonal groups, etc. He pointed to Kshirsagar's Bartlett decomposition of a

Wishart matrix, and also produced his own derivation which involved a parti-

tioning scheme. In 1963, Khatri published a paper [1361 discussing conditions

under which a second degree polynomial in elements of a real matrix normal

variable would be Wishart. He also discussed issues of independence of real
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vector normal variable sample mean and sample covariance matrix. As an

epilogue, he remarked that the results also hold for the complex case with the

appropriate changes. In 1965, Srivastava [256] published his important paper

on the complex Wishart distribution, which included a powerful generaliza-

tion for finding the density function of any random variable A = BBH when

the density of the random variable B depends on B only through the form

BBH. Shortly thereafter, in the same year, Khatri [137] published a com-

prehensive review of classical statistical analysis based on the vector complex

normal distribution. A paper published by Tan in 1968 in the Tamkang Jour-

nal of Mathematics [266] gives an extensive development of distribution theory

related to the complex normal distribution. It has been relatively unnoticed

because it was published in Taipei. It deserves much wider recognition. Krish-

naiah [152] updated this review in his comprehensive paper of 1976. Srivastava

and Khatri's book [257] on multivariate statistics in 1979 treats the complex

case where it can do so profitably without destroying the flow of the material.

They include complex matrices in their theorems on matrix theory.

There are two texts devoted to the statistics of complex variables, both

by Kenneth S. Miller. Miller's interest in statistics of complex variables is a

natural extension of his earlier work [177] which has wide application to a more

traditional treatment of signal processing restricted to real variables. That text

includes discussions on topics such as the Generalized Rayleigh distribution,
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Rice variates, Whittaker functions, envelope detection, Cramer-Rao bounds,

Wiener-Khintchine relations, and passage of Gaussian noise through a linear

filter. Miller's 1974 book [180] deals with complex stochastic processes. The

next book [181] develops the theory of hypothesis testing using univariate and

bivariate complex Gaussian variables. It begins with a review of Neyman-

Pearson testing. Throughout, it works with the bivariate complex normal

distribution, CN2(c, R). He derives the bivariate complex Wishart density

function CW2(n, R) and references Goodman [92] for the density function of

CWp(n, R). He addresses groups of transformations, functions invariant with

respect to a group, and functions that are maximal invariant. He observes

that uniformly most powerful (UMP) tests do not abound, but sometimes it

is possible to find UMP invariant tests with respect to some group G. He also

recommends further restriction to the class of unbiased tests.

Compared to other areas of statistics, the literature on statistics of complex

variables appears sparse. Saxena provided a nice annotated bibliography of

60 references subtending Rice's 1944 paper [220] through 1976. The largest

number of references in any one year was 8 in 1972. The early works are

application oriented. A short small spurt of work began with Wooding's 1956

paper. Work resumed in 1963 which motivated about 7 years of work. Another

increase in productivity began in 1970 which lasted 4 years. No papers were

published in 1974, one in 1975, and two in 1976, which was the last year
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included in the bibliography.

The following references either are from the period 1977-1991 or are earlier

references I have located which were not cited in Saxena's paper.

Freedman and Lane [87] reported in 1980 that the first n - 1 Fourier co-

efficients of the discrete Fourier transform of n independent complex normal

variables are independent identical complex normal random variables.

Fang and Krishnaiah [79] published the asymptotic distributions of func-

tions of eigenvalues of the complex noncentral Wishart matrix via perturbation

theory in 1981.

Singh and Pillai [245] reported on the exact non-null distribution of Wilks'

L,, criterion in the complex case for testing the hypothesis

H : = a2[(1 - p)I + peeT]

where a > 0 and p are unknown against the alternative hypothesis of inequal-

ity. The vector e is a vector of all ones, eT = (1,..., 1).

Khatri [138] derived a test to determine if a complex Wishart matrix

could be a real Wishart matrix. Andersson and Perlman [29] derived tests

to determine if a p-dimensional sample complex covariance matrix could have

come from a p-dimensional real multivariate distribution, and to test if a 2p-

dimensional sample real covariance matrix could be considered to have the

structure of a p-dimensional complex multivariate distribution.

B. N. Nagarsenker, P. B. Nagarsenker, and Quinn [189] derived an asymp-
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totic expansion of the non-central distribution of Wilks' statistic for the com-
plex Gaussian case. Wilks' A statistic is given by A = [det(A+B I

A - CWp(n, E, 0) and B ,-, CWp(m, E, 6) where 6 = ppH E-1. A nice review

of the life and works of Wilks, with insightful comments on his results, is found

in Anderson [25].

Patil et al. published an encyclopedic dictionary of multivariate distribu-

tions [205] in 1984 which includes those defined of the field of complex numbers.

A wonderful feature of this dictionary series is that is makes explicit the re-

lationship between various distributions. This is an excellent entry point into

the literature on distributions.

5.3 Zonal Polynomials, Hypergeometric Func-

tions, Group Representation Theory

The purpose of this section is to review the development of zonal polynomi-

als. Zonal polynomials are the key to developing the joint density function of

sample eigenvalues of a complex Wishart matrix. The eigenvalues examined

in this thesis follow that distribution.

The distribution for the case of the real Wishart matrix was derived by

James [120] in 1964. He also wrote down the result by inspection for the case

of a complex symmetric matrix, without derivation.
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As of 1987, zonal polynomials had only been developed for the case of the

real symmetric matrix and the two matrix argument case of a real symmetric

matrix and real symmetric positive definite matrix [188]. Gross and Richards

developed zonal polynomials for the case of complex Hermitian matrices in

1987 [96]. A contribution of this thesis is the application of their work to the

distribution of sample eigenvalues of a complex matrix.

The reason we need to even think about zonal polynomials, hypergeometric

functions, and group representation theory is because of the need to evaluate

the integral fu(p) etr(- E-1UHAU)dU where the integral is taken over the set

of all p x p unitary matrices. The function etr(X) is a standard notation

for exp(tr(X)) in the literature and texts dealing with distribution theory in

multivariate analysis.

Zonal polynomials are important to the study of the distribution of eigen-

values of a Wishart matrix. Takemura [265] has recorded a wonderful history

of the development through 1984, from which I have taken many of the com-

ments made below. Some of the works of James were briefly described in

the earlier section on eigenvalue testing, yet the history of the development

of zonal polynomials rests on these same works. James is often cited as the

prime irotivator for work with zonal polynomials.

In 1960, James published his paper [118] on the distributions of eigenvalues

using representation theory of the linear group. His results are given in terms
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of zonal polynomials. Much of the interest in zonal polynomials since 1964

has been a direct result of the application to multivariate statistics and the

paper by James [120]. In that paper, he generalized his previous work and

discussed a general method for calculating the zonal polynomial. Until the

mid-1980s, work on zonal polynomials has been done primarily by statisticians.

Since then, mathematicians have started to examine zonal polynomials in the

context of more general structures which has led to new results and powerful

generalizations.

Zonal polynomials form a subset of spherical functions. They are homo-

geneous harmonic polynomials defined on the surface of a multidimensional

sphere. Zonal polynomials are orthogonal functions on n-dimensional spheres.

You can think of them as generalized Legendre polynomials. In 3-dimensional

space, in fact, zonal polynomials are directly proportional to Legendre poly-

nomials [251].

Another early worker in this area is Constantine, who worked with James

at least as early as 1958 [56]. In his 1963 paper [57], he worked in terms

of complex symmetric matrices (not the same thing as Hermitian matrices),

and defined the hypergeometric function of complex matrix argument as a

function of zonal polynomials of complex symmetric matrix argument. With

this, he derived the density function of the noncentral real Wishart matrix.

lIe also found the moments of the determinant of a noncentral real Wishart
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matrix. In his 1966 paper [58], Constantine defined a generalized Laguerre

polynomial of complex symmetric matrix argument which, in turn, is defined

in terms of zonal polynomials of complex symmetric matrix argument. With

these, he finds the distribution of the generalized Hotelling's To2 statistic where

To= tr(AB-'). Matrix A is a real noncentral Wishart matrix distributed as

A Wp(n, E, ft) and real central Wishart matrix B is distributed as B -

WP(m, E). When the multivariate normal distribution underlying A has mean

vector yt, then the noncentrality parameter Q2 is defined by Q = jqiH. The

1976 paper by Constantine and Muirhead [59] presents asymptotic expansions

for distributions for several very important matrices, including A(A + B)-',

for some or all of the eigenvalues of fl large, which can be thought of as

a generalized signal-to-(signal plus noise) ratio where A and B are defined

above. They also develop asymptotic distributions for 1B and BC-' where

C - Wp(k, E). As in earlier papers, these results are developed in terms of

hypergeometric functions of matrix argument.

By 1982, the importance of zonal polynomials to the development of dis-

tributions in multivariate statistics became recognized. Muirhead [187] (the

student of both James and Constantine) published his text which included a

major chapter devoted to zonal polynomials. Muirhead develops zonal poly-

nomials as a solution to the partial differential equation

AYZ.(y) = [p. + k(n - 1)]Z.(y)
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where AY is the differential operator, called the Laplace-Beltrami operator,

defined by

A=1 Y:-

m

where p,. -ki(k -i) and K = (ki,'-km) such that k = ki + km. It

has become traditional to use the Greek kappa (K), the Latin letter k, and

its subscripted partitions ki even though the opportunity for ambiguity after

copying exists. Muirhead provides a recurrence relation for computing the

coefficients of the zonal polynomials. He also sketches the group representation

theory development of zonal polynomials used by James.

In 1984, the Institute of Mathematical Statistics (IMS) published Take-

mura's monograph on the subject. This was only the fourth monograph IMS

published on any subject. Takemura defines zonal polynomials as symmet-

ric homogeneous polynomials on the eigenvalues of a symmetric matrix. He

writes down the definition-and properties of complex zonal polynomials with-

out proof since the proofs for the real and complex cases are the same for his

development. He remarks that complex zonal polynomials are simpler than

real zonal polynomials, noting that the complex zonal polynomials are the

same as homogeneous symmetric polynomials called the Schur functions. The

explicit relationship is given by Saw's generating function introduced by Far-

rell [80]. Takemura shows these to be the same via the uniqueness property

of the triangular decomposition of a positive definite symmetric matrix. Note
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that it is possible to have a complex symmetric matrix, which is different than

an Hermitian matrix. He also writes down the density function for the zero

mean complex vector normal and the central complex Wishart distributions.

In his Chapter 5, Takemura uses the symbol - to denote complexification of a

theorem established for the case of real variables. Takemura uses that symbol

over variables to indicate they apply to the complex case. Prior to the work by

Gross and Richards, Takemura's development of complex zonal polynomials

was the most complete I have found in the literature.

The development of the theory of zonal polynomials has proceeded simul-

taneously from a traditional physics and special functions point of view as

represented by Stein and Weiss [258], and from a mathematician's point of

view as represented by Gross and Richards [96]. The nicest introduction to

zonal polynomials from an engineer's point of view is Stein and Weiss' book.

Its work was done without reference to James' work. Stein and Weiss work

in the field of real numbers and use differentiation, so application to the com-

plex field must proceed cautiously. They do not develop the splitting theorem

needed for this thesis.

Gross and Richard's work is a development of the theory of hypergeomet-

ric functions of matrix argument, firmly rooted in group representation theory,

that simultaneously treats the case of real, complex Hermitian, and quater-

nionic variables. Of importance to this work, Gross and Richards provided a
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development of the splitting property for zonal polynomials in the context of

complex variables. In the development, they assume Hermitian matrices for

the complex case rather than complex symmetric matrices. This is evident

by application of the unitary group. It is more mathematically motivated,

and less applied, than the work by James. Compared to the work by Stein

and Weiss, Gross and Richards do not include the specification of a reference

point on the sphere. This prevents drawing observations about coordinate

transformations made clear in the approach by Stein and Weiss. Closing the

connections between these two works is a valuable task that needs yet to be

done.

Gross and Richards published a continuation [97] of their studies in 1989

which introduces the concept of total positivity in the context of spherical

series and hypergeometric functions of matrix argument. They point out that

the spherical function known by mathematicians is the zonal polynomial known

by statisticians. They also remark that up to scalar multiples, the spherical

functions coincide with the Schur functions. They show the Euler integral

Z1m(t) = 1(b) [b]m f Zm(rt)[det(R)I'-a[det(1 - r)16-a-ldr
S= r(b - a)F,(a) [am JO<r<i
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where

Re(a) > n - 1

Re(b-a) > n- 1

t E Sn

r : Hermitian matrices whose eigenvalues are between 0 and 1

l'n(a) - rrn(n-1)/2 l P(a - i + 1)

as an example of a reproducing integral formula. It would be good to look

at this in the context of section 2.2 and chapter 3 of Fowler's thesis [86] on

Reproducing Kernel Hilbert Space because Krantz [1431 showed that zonal

polynomials are reproducing kernels.
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Chapter 6

STATISTICAL TESTS

This chapter provides distributional results for test statistics that examine

sample eigenvalues to gain understanding of underlying parameter eigenvalues.

It is in this chapter that the thesis topic is most directly addressed. You will

observe that I have only answered special cases of the thesis question.

Tests of greatest interest take a set of samples and form one statistic upon

which decisions are based. These make the most efficient use of the data, but

they also have sampling distributions that are very difficult to compute. A

compromise is to partition the data set into independent sets, and form a test

statistic from these sets. This approach does not make efficient use of the

data. One version of this approach results in a test statistic that is easy to

compute and has a sampling distribution represented by a function that is a

standard function that statisticians work with.

Several approaches are presented in this chapter. The first approach arbi-

trarily partitions the data into two independent sets and forms an F-statistic

from the ratio of independent sums of the sample eigenvalues. A second ap-

proach partitions the data into one block assumed to be noise-only and another

partition that possibly contains a signal. The result is the joint distribution

of the sample eigenvalues of the signal-plus-noise sample covariance matrix.

This is the form of Schmidt's MUSIC problem [238].
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A third approach is to work with data transformed into the form of W =

( ) and obtaining the distribution of the statistic x This requires
0 b

assuming a population covariance matrix E which can be part of the null

hypothesis of a test. The ratio of sample eigenvalue sums or averages belong

to this class.

A fourth approach has its origin as a maximum likelihood ratio test statistic

which requires only partial knowledge of the population covariance matrix. For

the real variables case, the asymptotic distribution of this sphericity test was

derived by Anderson [24]. I have provided the joint density of this statistic

with some nuisance variables. For the case of p = 2, I have provided the

density and cumulative distribution function.

The last approach I examined, and the one of greatest interest in the general

case, involves simple transformations of the sampling distribution of eigenval-

ues. I have assumed that the special case of the sample eigenvalues D having

a joint distribution CWp(n, A2). The statistics for which I computed distribu-

tions were motivated by Krishnaiah's works (which will be referenced in their

respective discussions). This section is the culmination of the supporting work

in the appendices, both of the complex variables and zonal polynomial theory.

There is still a great deal of work left to extend these to the general case.
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6.1 Tests Based on Two Independent Sets of

Samples

6.1.1 F-Statistic from Ratio of Independent Sums of

Sample Eigenvalues

Consider the following procedure. Assume that all samples are statistically

independent. Then it is possible to define an arbitrary partition of the sample

set, splitting it into two sets. Form a statistic within each of the partitions and

then compare the statistics. For example, let the statistic in one set be the sum

of the m, largest sample eigenvalues, and let the statistic in the other set be

the sum of the m 2 smallest sample eigenvalues. Because the two statistics were

obtained from independent samples, the statistics themselves are independent.

We know that linear combinations of sample eigenvalues yields a chi-square

random variable. The independence of these statistics gives us hope that an

F-statistic can be formed. A benefit is that the F-distribution is one of the

most widely known and used distributions in statistics. Its properties have

long been known.

Recall that if x, has the non-central chi-square distribution with parame-
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ters v, and bl, x2 has the non-central chi-square distribution with parameters

v2 and b2, and if x, and x2 are independent, then y = (V2 x1)/(vIx 2 ) has the

doubly non-central F-distribution with parameters vi, v2, bi, and b2. The pa-

rameters v, and v2 are usually called "degrees of freedom".

Theorem 6 Let W, - CWp(ni, El,61) and W2 - CWq(n 2 , E 2 ,b 2 ) be inde-

pendent complex Wishart random variables. Let cl be a p x 1 vector of known

fixed constants, and let c2 be a q x 1 vector of known constants. Then

_-_, _ _, •n2 cW'Wiclc2 E 2c2  (2n --2 , ,

F = -- '• dncF 2c1,c2n2, 1  Cj 2b 2

2n 2 eHE2c 2  
ceWj'>IICI cfE22

Proof. By theorem 54,

C,"W -c, - CW(n,c'> 1 c,c,, c, )

and

cH W 2 c 2 - CWl(n 2 , cHf 2 c2 , CHf 2 c 2 )

Let c41Wjc, and C2HW 2 c2 be positive. This is satisfied if E, and E2 are positive

definite. Then by theorem 53 we know

2cH'Wici X2 (2cj'6,ci
" "HEC X2n, HEC

and

2cH2W 2C2  2 (2c~' 2 cb2C
H X2n 2  H

Taking the ratio of these terms, each divided by their respective degrees of

freedom, gives us the doubly non-central F-distributed random variable F. 0
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Patil et al. (pp. 142-143) [204] catalog the doubly non-central F-distribution

dncF(vl, V2, 6b, 62)

A random variable x has the doubly non-central F-distribution with parame-

ters vl, LV2 , 1, and b2 if its probability density function is

"0~•= 00 \v(v/VI + V2

j!k!B (EL + j, - + k) exp ( 2 j

where x > 0. The numbers v1,V2 are positive integers, and bl,62 Ž 0. The

function

B(p,q) = xP-(1 - x)q-ldx

p > 0, q > 0 is the beta function. A famous identity is B(p, -N = r(prq) whereriP+q)

F is the gamma function.

Under the null hypothesis Ho : c j'Cl = cH E2c2, the density function of

the test statistic is

2cH H WEc, -ccHW2C2

, W2 C2 njc2 W2C~c2C1 c ncfW
2n2cH E2C2

S~2CHbcj 2cHb,2C!

,dncF 2n,,2n2, 2cH•,c----I, I CH

This test allows you to compare special linear combinations of elements of the

complex Wishart matrix. It is particularly useful if you want to compare any

two elements on the main diagonal of the complex Wishart matrix. Establish
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a null hypothesis (or default assumption) that the two sample special linear

combinations n 2cH"Wicl and nlc4W 2 c 2 are really the same. Form the test

statistic F. If the null hypothesis is rejected at your chosen a level of sig-

nificance, then you conclude the alternate hypothesis H, : cH1Elcl ýc cf 2E2c2.

This test can be applied sequentially to discover the order of the underlying

system.

Corollary 1 Let W, - CWp(n, El,b) and W2 - CWq(m, E 2, 52) be inde-

pendent complex Wishart random variables. Let c1be a p x 1 vector of known

fixed constants, and let c2 be a q x 1 vector of known fixed constants. Let

W, = U1L2Uf' and W2 = U2L2U21 be the eigenvalue decompositions of W1

and W2, respectively. Then

2ctL2Cl

2n1 c'I'E u1 1 - n2c1 1 CCH U 2 E~L2c2CF = UE1UcL = n 1c L~c2c{VU'Vie
Hz-2c 2• 22 1

- dnF 22 2cHUfHbIUlcl 2cHU"6U 2c2'

dncF 2ni,2n 2, c HU1•
1 1 U ' Cr ,Uj½ 2U2c2 /

Proof. From theorem 53 we know that

2cH'L2,cl 2 2ci U['ff ic

c{r~½~~ii 2n 1cbfU( ici)

and

2c2H L 2C2  2 (2c 12HU2 b 2 U2 C2 \24L~c, X 2n22Vc
C2HU 2H r2U 2C2 - CU2c 2  H•Ur, 2 U2 c•2

Taking the ratio, each divided by its respective degrees of freedom, gives us a

doubly non-central F-distributed random variable. 0



138

A common practical situation is where W1 and W2 arise out of a sampling

of a common complex vector normal distribution with El = E2. For W, and

W2 obtained from independent samples, we know W1 # W2 with probability

1. Thus U1 # U2, and we have no hope of finding a distribution of the ratios

independent from E.

6.1.2 Density of Eigenvalues of Sample Signal Plus

Noise Covariance Matrix with Respect to Inde-

pendent Sample Noise-Only Covariance Matrix

Theorem 7 Let A1 - CWp(mE) and B1 -" CWp(n,E) where m,n > p.

Then the joint density of the unordered roots of det(Ai - 12B 1 ) = 0, which we

sort for testing, is

f(L 2) - p!g(L 2)

- p!c2  Il(m-P)(1 + l?)2(p-i-1)-(m+n) (i + 1•)2 (I - J)2 (dL 2)
P!C J IJ P

where c2 is defined by

rP(P-1)CFp(m + n)
C2 = Crp(m)Crp(n)crP(p)

This is a complexification of Anderson's theorem 13.2.2 (pp. 522-530) [26].

Discussion. In the context of signal processing, the matrix A1 can be taken

to be the sample covariance matrix of a deterministic signal plus random noise
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measured during the time period of interest. The matrix B1 can be the sam-

ple covariance matrix measured during a period when signal is assumed to be

absent, but the noise remains the same as when the signal was measured. This

theorem then gives the density of the eigenvalues of the sample signal-plus-

noise covariance matrix with respect to an independently measured sample

noise-only covariance matrix. The number of samples taken to estimate the

covariance matrix are allowed to be different. Note that when B1 is nonsingu-

lar, then the result is also the joint density of the roots of det(A 1B- 1 -12I) = 0

or variations on det(BIH/ 2ABi1/ 2 - 12I) 0 0. Thus, ABj 1 , BiI/2A1Bj 1/2,

B1 /2 A1 BiH/2 , Bi /2 AIBiT/2 , BiT/ 2A 1Bj1/ 2, or Bji/ AIB 1 1/ (depending

on the factorization theorem you use) has the interpretation of a generalized

(signal-plus-noise) to noise ratio.

Compare the problem being treated here with the work on MUSIC by

Schmidt [238]. For this theorem to apply, we need the population covariance

matrix to be the same for the two sampled matrices under the null hypothesis.

Deflat ý the sample covariance matrix of the signal-plus-noise by the eigenvalues

thought to be due to a signal component (1? - 12. ). Call this deflated matrix

A1. If the noise-only component truly has been removed, then none of the

eigenvalues of A1 should be A2.. Under the null hypothesis that H0 : P = 0,

the A1 here is the S = APAH + A2S0 of Schmidt and the 12B1 here is the

A2..SO of Schmidt. Note that no deflation is required for the initial detection
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in absence of interference problem under the null hypothesis that there is no

signal.

Proof. The proof presented here parallels the proof Anderson provided for

the case of real variables where the proper Jacobians have been substituted

and other appropriate modifications made. The strategy is to find the joint

distribution of an intermediate matrix E and the roots of det[A-f(A+B)] = 0

where f is a scalar. Then, observe that E and F = diag(fl,. ., fp) are statis-

tically independent. Find the density of E, and divide into the joint density to

obtain the density of F. Change variables from F to L2 = diag(/ ,---, 12) to

obtain the density of the roots of det(A1 -_ B1 ) = 0. A difference from Ander-

son's work is my consideration of unordered versus ordered eigenvalues and the

process by which the sorted eigenvalues are obtained. The algebra is straight

forward, but the original choice of the changes of variables (which I copied

from Anderson) that allows the solution to be obtained requires uncommon

insight.

Begin with the general eigenvalue problem

Aix, = 12Bix, (6.1)

where 12 is the eigenvalue and x, is the associated eigenvector of A, with

respect to (or in the metric of) B1. The first simplification is a transformation

to standardize the covariance to the identity matrix. Choose matrix C so

that CECH = I. Let A = CAICH and B = CB1 CH . By theorem 54, A -
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CWp(m, I) and B , CWp(n, I). Also note that

det(A - 12B) = det(CACH - 12CB 1 CH) = det[C(Al - 12BI)CHI

= det(C) det(A - 12B 1 ) det(CH) = 0

implies det(Al - 2B1 ) = 0 when det(C) 0 0. So, the eigenvalues of A with

respect to B are also the eigenvalues of A 1 with respect to B 1. If we premultiply

(A - 12B)x = 0 by C-1 we observe that

0 = C-1 (A - 12B)x = (C-'CAICH - 12C-1CB1 CH)x = (A1 - 12B)CtHx

Thus x, = CHx relates the eigenvectors.

Now for the trick. Consider the eigenvalues {fi}1 that satisfy

det[A - f(A + B)] = 0

and the eigenvectors {yj}q satisfying

[A - fi(A + B)]yi =0 (6.2)

Observe that when fi # 1 this can be written [A- .B] y, = 0. So, the

eigenvalues of equation 6.1 are related by lI If*

To proceed, establish an ordering on the eigenvalues {f,}f. This ordering

will determine the ordering of associated eigenvectors {yj}j to establish the

matrix Y. As far as the derivation is concerned, it does not care what ordering

you choose as long as it remains fixed for the remainder of the derivation. We
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will observe from equation 6.3 that the order of the eigenvalues affects f(F)

P
by looking at the FI (ft - fj)2 term. This differs from Anderson's work

1<3

I have control over the ordering by the algorithms used to extract eigenval-

ues. Given any selection of eigenvalues and associated eigenvectors, I form our

ordered set by sorting the eigenvalues. Thus, I actually want to end up with

p!F(f) since I actually am concerned with the case of the unordered eigenval-

ues which are then sorted. See section E.6. Okamoto [197] shows us that the

probability of two roots being equal is zero. Define

fi

fp

and Y = (y1,.. yp). Then equation 6.2 can be rewritten as AY = (A + B)YF.

Suppose that YH(A + B)Y = I. Then

yHAY = YH(A + B)YF = F

Multiplying by (yH)-l and Y-1 we see A+ B = y-Hy-1 and A Y-HFY-1.

The next simplification is to let E = Y-1. Then

A+B= EHE=G

A = EHFE

B = EHE - E"FE = E H(I - F)E

Now the known variables (A, B) are in terms of the variable I want (F) and a

nuisance variable (E).
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Recall that the eigenvectors are unique, apart from a scale factor. The

restriction of

YH(A + B)Y = YHGY = I

determines Y up to a phase factor, where Y = (yl,' , yp). Consider

Y. - (e' O'Yl, e02Y2 , " yp)

Then

y• Gy1  Gy2 ... e-i(6 -P)y1IGyp

ei(:(e-02)yGy1 yjGy2  ... e-i(02-eP)yGypY!FGY. =2~j 2Y

ei( 9'-9 )uYpGy 1  ei(e2-P)yIGy2  ... yGyp

Because yy'Gyj = bij, we know that

1 0 ... 0

0 1 ... 0
YHýGY. -I,

0 0 ... 1

So, each eigenvector can be multiplied by a constant phase shift and still satisfy

its orthogonality relation. From E Y-' we know EY = I. Let

eiwl q1

E=

e tWPC p
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Then
ei(W1+Gi)Elyl 

... ei(Wl+OP)flYp

ei(w2+O1)C 2 YI ... ei(W2+OP)C2Yp

ei(wp+°O)fpy1 ... ei(WP+OP)fPYP

ei(w1+01)

ei(w2+62)

ei(wP+Op)

To make EY. IP be satisfied, we merely choose wi = -09. This defines

the relationship uniquely between E and Y. However, we still have to fix the

value of Y. The reason we have to fix it is so that the transformation between

(A, B) and (E, F) is unique. For this reason, we choose Wk so that ew&k Ckl >_ 0.

We can always do this.

Now we want to evaluate the Jacobian of the transformation J[(A, B) -+

(E, F)]. Let's summarize our transformations. A = EHFE implies

(dA) = (dEH)FE + EH(dF)E + EHF(dE)

The transformation G = EHE implies

(dG) = (dEH)E + EH(dE)

Multiply by E-H and E-' to obtain (dA) and (dG) as follows.

(dA) = (EH)-y(dA)E- 1 = E-H(dEH)F + dF + F(dE)E-1
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(dG) = (EH)-I(dG)E-1 = E-H(dEH) + (dE)E-1

Let (dW) = (dE)E-1 . Then

(dA) = (dW)HF + dF + F(dW)

and

(dG) = (dW)H + (dW)

Stringing these all together, we find the joint distribution of (A, B) in terms

of the joint distribution of (E, F).

f(A,B) = f(E,F)J1 [(A,B) -- (A, G)]

"×J2[(A,G) - (A,0)]J 3[(A,G) -+ (W, F)]

"×J4[(W,F)-- (E,F)]

Evaluating JI, we have the relations

A= A A= A

G A+B B G-A

82A 8(G-A)
det A9 det

8A 8(G-A) 0 1

where M- means the matrix formed by

aglIR a91lR 
8

91IR a911R aglIR

aA

agppi 
8 9pp1
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Evaluating J 2, we note that since A and A are functionally independent of

G and G, we can write

J[(A,G) -- (A, G)] = J[(dA, dG) --- (dA, dO)]

= J[dA -+ dA]J[dG -+ dGj

Since A, -. CWp(m, E) we know A, = A'. From the transformation A =

CA1 CH, we also know A = AH. Similarly, B = B1H. From theorem 38,

J(dA + dA] = Idet E-lI-2p

and

J[dG dG] = IdetE-f
2 p

This means

J[(dA, dG) --- (A, G)] = Idet EI4p

Evaluating

J3 [(A, G) - (W, F)] = J[(dA, dG) --- (dW, dF)] -9(A, G)O(W,F)l

is a bit trickier.

ddii = dfi + fi(dwii)* + fi(dwii) = dfi + 2fi Re(dwij)

dij = fj(dwj)* + f(dwij) ,i <j

d41i = 2 Re(dwi)
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d=ij = (dwji)* + (dwij) , i < j

Note that since Y is not Hermitian, then neither are E or dW. However, G, dG,

and dG are Hermitian by construction. We separate the real and imaginary

parts to compute the Jacobian for the transformation of variables. Note that F

is real. The subscripts R and I, to follow next, refer to the real and imaginary

parts of the variables.

ddii = dfi + 2fi(dwjiR)

dijR = fj(dwjiR) + f,(dwi3 R) , i <j

daj = -fj(dwjij) + fi(dwijI) , i <j

d4ii = 2(dwiiR)

d~jRt = (dwjiR) + (dwijR) , i < j

dgij= -(dwji) + (dwiji) ,: .. j

To compute the Jacobian more easily, define two matrices M and N, as

found in Anderson [26](p. 527).

f2Ip-2
M=

f,,-I11
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and

f2

f 1

f3
N=

fp

fp

Note that

det(M - N)= f(f i- fj)
i<i

- (fl -2)(fl -f3)(...( - fp)(f2 - f3)...(f2 - fp) ... (fp-I - fp)

We recognize this as a Vandermonde determinant. Graybill [95] p. 266., tells

us that the corresponding Vandermonde matrix is

1 1 1 .-- 1

fl f2 f3 "" fp

f12  f 2 ... fP2

., • ... :

fWe-I fth-u fe-e ... fpp-il

We thus seek the determinant of the matrix given below for the linear change
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of variables.

datii dgii ddijn (i < j) dgijn (I < j) ddtijl (i < j)dgiji (i < j)

dfi I 0 0 0 0 0

dwiiR 2F 21 0 0 0 0

dwijR (i < j) 0 0 M I 0 0

dwijR (i > j) 0 0 N I 0 0

dwiji (i < j) 0 0 0 0 M I

dwijI (i > j) 0 0 0 0 -N -I

The determinant of this matrix is

det det det(= 2) det(M-N) det(N-M)
2F 21 N I -N -II

- (-1)p(p')/ 22P[det(M - N)]2

where

det(N - M) = det[(-1)(M - N)] = (-1)p 1p-) 1/2 det(M - N)

The Jacobian is the absolute value of this determinant, which is

P

J3 [(dA, dG) --+ (dW, dF)] = 2P II(f, - f,) 2

i<j

Compare this with Equation (2.9) of [137].

Finally, consider the Jacobian

J4[(W,F) -* (E, F)] = J4 [(dW, dF) -- (dE, dF)]
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Recall that (dW) = (dE)E- 1, and that E is not a matrix with special struc-

ture. Therefore

J4 [(dW, dF) -- (dE, dF)] = J[(dW) -- (dE)] = Idet(E-i) 2P

by taking the transpose of theorem 31.

Now put it all together. The joint density f(A, B) of random variables A

and B is given by

P

f(A,B) = f(E,F)JIJ2J3 J4 = f(E,F) xix IdetE 4P2P I(fi-fa) 2 Idet El-2P
i<j

p

= f(E, F) Idet EI2" I'(f t - fj)2

i<3

Thus

J[(A, B) --- (E, F)] = Jdet Ej2"2" fl(f, - fj) 2

i<j

is the Jacobian of the transformation A = EHFE and B = EH(I- F)E where

E is a p x p complex matrix without special structure and F is a p x p diagonal

real matrix where the ordering of individual eigenvalues is fixed and arbitrary.

Now we introduce the dependence of the distribution of A and B. Recall

that A and B are statistically independent and A - CWp(m, I) and B

CWp(n, I). Thus the joint density of A and B is

1

f(A, B) = r(m)cr'() Idet A'"-P Idet BI"-p etr[-(A + B)]

Therefore the joint density of E and F is

g(E,1F) Idet(EHFE)Im-P det[EH(I - F)E]I-p xg(EF)rp =
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p

x etr[-(EHE)]2P Idet E12P I'(fA - fh) 2

i<j

Examine the determinants. We want to be able to rewrite g(E, F) as

gi(E)g2(F) with gi(E) of a form that is easy to integrate. This would leave

us with a function only of F.

p

det(EHFE) = det(EH) det(F) det(E) = det(F) det(EH E) = det(EH E) JJ f,

det[EH(I - F)E] = det(I - F) det(EHE) = det(EHE) 11(1 - fA)

Idet(E)12 = det(EH E)

Substituting into g(E, F) we obtain

g(E, F) = _c[det(EHE)]m+n-p X

x [ft filnp(l _ f,)np] [ii(f1 - fh)2] etr(-E HE)

By the factorization theorem, we know that E and F are independent. Notice

that det(EHE) and etr(-EHE) are "generalized even" functions of E (see

definition 84).

If we had not restricted eil Ž_ 0 then we would recognize that

[eEHE)]+n-p I H[det(EH E)+- l-;- etr(-EH E)(dE)

is the expected value of [det(EHE)]m+n-P when E is distributed by CNp,p(0, I, I).
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Consider

e iWI -

EHE (-iW , H ,...= q +... +H HE •=e I 'e- Cp + .-. + f

Thus EHE is invariant as a function of {wk)}. Therefore, when

[det(EH E)J] etr(-EH E)

is integrated over E where we restrict wk so that ei" Ek1 > 0, we get the same

answer as when we integrate

(1) [det(EH E)Ietr(-EH E)

without restriction on wk. For each k, we observe

IJdWk = 27r, l<k<p
0

Thus we know to consider

rP 2 ( -) p [det(E HE)]-+--P (• etr(-E HE)(dE)

Now, since we want to evaluate this integral, we consider E as being dis-

tributed as CNp,p(O, I, I). When this is true, we know from the definition of

the complex Wishart distribution that

G = EHE , CWp(p, I)



153

By theorem 79, we know that

gJIGm+n_1 = Ccrp(m + n)

crP,(p)

Thus the integral above gives us the scaled expected value

i9 (-1 -)P crp(m + n) _2-PirP(P-')cL'(m + n)

crF(p) crv(p)

When we consider the integration when ei, is not restricted, we find

2-P~rP(P-1)[det(EHE)lm+n-P7r-P etr(-EHE)(dE)

I 2-P~rP(P-I)crp(m + n)/Crp(p)

= crp(p)[det(EH E)]m+n-p etr(-EHE)(dE)

irP2crF(m + n) I

fi(E) is a density function when eil is not restricted. We want the density of

E when e1 Ž> 0. Recall that since

[det(EH E)Ia etr(-EHE)

is a generalized even function, we multiplied our function by 27r and ex-

tended the region of integration. To recover the desired density function, we

want f(E) = (2ir)Pf 1(E). Thus

f(E) = 2Pcrp(p)[det(EH E)Im+n-P etr(- EH E) (dE)
(r)(P'-)crp(m + n)

is the density of E when ei, > 0.

Since E and F are statistically independent, we find f(F) by dividing the

joint density g(E, F) by f(E) as follows.

f(F) - g(E,F)
f(E)



154
2P H E)]+n-P t(E )

crpdm)crp(n) [det(E _) Xt(EE
2PCrp(p) [det(EHE)]m+p- etr(-EHE)

=rP(m-1)crp(m+n)

X [flfm-p(1 f.)fl-p] (f, _ f)2]

Simplifying, we get

f() p(Pl1) cF(m + n) r.)n. (f _~ j2] (-3
f(F) = crp(m)crp(n)crp(p) [i=, I

where 1 > fj > 0 for each i since f = L- in the original problem and the

ordering of the {fi} is as fixed earlier in the derivation. Strict inequality is

specified because Okamoto [197] showed that the probability of two sample

eigenvalues being equal is zero.

The density of 1• is obtained from f(F) using

Following Anderson (p. 530) [26], we note that.

df, d 1+ )- (1 + l 1)' -/2(1 + 12)-2

dl? dl?

= [(1 + j?) - 12](1 + li)-2 - 1
(1 + 1?)2

Thus

J[F --' L 2] -- II

We also note that

1-? - 1J j(f . _ fj) 2 1 + l? 1 2+ l
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arid

+q

Note dIiat.

0T/ +i.)(I + li 0 ,+-,•, i + ,),-, H 0i + 1.),

i•erforming the cliange of varialh.e, we gelt

g(12)~~~ = r( 22 1(" 1 2)

i"':, (~ 1 )U L,2.,] [ + ' q"- SI • 1q)2]/L+_: J?+ li

xI I - 1 ),2--I

L'=' "";'-, (I+ 1, 1),-, 11H I 0 /

At, thi . point, we note I hda. - in -1 -'2 - 2i 2(p i - I) - (in I ). 'l'lu

e' ',

!1(0 - rl I 1( 1] ( '1"i,(,.~~ ) ( 1 0I,( ( l,(
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Putting it all together, the joint density of the sample eigenvalues {ll}

which satisfy det(Ai -1 2B1 ) = 0 where A1  CWp(m, E) and B,, CWp(n, E)

is

p n)(-p (1± +1
g(L2) x P 1n crI' p(m + n) t- - )P)p-i) + 12 )2)crP(m)crP(n)crp(p) I =,1 + tm•+

(? - l)2] (dL 2 )

where L 2 = diag(l•,.., l) and

rI(l? _ IJ) = (12 -12)(12 _ 13)(12 _ 13)(12 _-1)(12 _ 14)(13 _ 2).. (2_ -12)
i<j

A few notational simplifications can be made. Since the lI are the general-

ized eigenvalues of A with respect to B, if B is nonsingular we observe that if

det(A - 12B) = 0 then det(AB-1 _12) = 0. Thus {1?}p are the eigenvalues of

AB-1. By theorem 115, there is a unitary matrix U so that L2 = UHAB-1U.

Also,

L2 + I = UH AB-'U + I = UHAB-'U + UHIU = UH (AB-1 + I)U

We observe
p

H 1J = det(L2 ) = det(AB-')

and
P

ft(1 + •)= det(L 2 + I) = det(AB-' + I)

Substituting into our density function yields

2) P(P-')CFP(m + n) [det(AB- 1 )]m-P [det(AB-1 + l)]2(p-1
g(L2 ) = crp(m)crp(n)crp(p) [det(AB-1 + f)Jm+"
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fj(1? 1 d2 2 )
fr, ( +2 12)2]

The final form, f(L 2 ) = p!g(L2 ), accounts for the procedure of sorting the

randomly selected unordered eigenvalues. This final form is the density func-

tion for the set of sorted sample eigenvalues. This is the appropriate density

for deriving the density of test statistics based on these sample eigenvalues.

This is the starting point for determining the number of significant sources for

the MUSIC algorithm.

6.2 Tests Based on One Set of Samples

In general, the distribution of a test statistic formed from dependent random

variables will be more complicated to evaluate than the distribution of a test

statistic formed from independent random variables. When the random vari-

ables are dependent, then you must know or assume information about that

dependency.

6.2.1 Tests that Require Specifying the Population Co-

variance Matrix

In this section, I am interested in finding the density function of the ratio of

linear combinations of sample eigenvalues of a p x p complex Wishart matrix.
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The test considered here requires that the population covariance matrix E be

specified. This differs from a test where E might cancel out in the forming of

the density function of the test statistic. As an intermediate result, considera 0
W - CW 2 (n, E) where W = Then, apply the expression for the

o b

density function for the complex Wishart distribution.

a 0
Theorem 8 Let W - CW2(n, E) where W = and n > 1. Let

0 b

x = 2" Then the density function of x is given by

g(x) - iri"[(n - 1), (n - 2)] (XZ 22 + (l.)2(n-4)

where 6(e, e) is the beta function.

Proof. We know that the density f(W) is given by

det etr -
0 b E21 E22 0 b

fAw) n=65

det Cr 2 (n)

E21 E22 J

When we evaluate the determinants, we obtain Equation 6.6.

jabI- 2 etr (EIE22I F2E2) ('-22 -E12 (a 0
f(W) = (Ell-222 - Y-21 E 2 )nCr 2 (n) (6.6)
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labI1, 2 etr -(Ell E22 E21 El,) (aE22  -bE12  ]

(~11~22 -(6.7)

labI-2 exp ( 2+b,, )(6.8
Eli~2 I-2-2 1 68(FIIIE22- E21EI2 )-cr2(n)

Notice that since E = E', we have

Ja bln- 2 ex p ( - a !2 '+ b ZiI iaE22-bfl,212. f(a b) (6.9)
f(W) = (E11E22 - IE12 12 ) n c 2(n) =fa

We can make the change of variables x = 2 and y = b. The inverse relations

are given by b = y and a = xy. The Jacobian of the transformation is given

by (aa aa a( Ozxi Y (
J=det ax a =det x 8Y =det y

ab ab 22 P-9 10
TaX T 'ax ay

Then

f(a,b) = f(xy, y) IJI = g(x,y) = g (a,b)

JXy21n-2 exp [ E1122+,E I (
I. ,, E.22- Ir l,212 d - (6 .10 )

(E11E22 - I12 12)Y cr 2 (n)

ixl--2 Iy 2n- 3exp [ -( 'X22i+ E,1)

(EF22 - E12 12) cr 2(n) (6.11)

Now integrate out y to find g(Q). Since b > 0, we know that 0 < y < oo.

Concentrating just on the function of y, evaluate the integral

1 = j lyj2n-3exp(-hy)dy (6.12)
dY
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where h is a function of x which is held constant during the integration, given

by

XE22 + Ell 1

ElIE22 - IE122

By corollary 48 we know

I Iy12n- 3 exp(-hy) dy = (2n - 3)! h- 2(n- 1)

This gives us our expression for g(x), where we recall that the beta function

is )3(m, n) = r and x > 0.

Ix"•(2n - 3)! (EII+E22 -IE ("-')
g(x) = (_11E22 - IF1212I)n cr 2 (n)

IXIn- 2 (2n - 3)! (ElII22 - IE 12l)-(n-1)

"(EllE22 - IE212)nr(n - 1)!(n - 2)! (xE 22 + Ell)2(n-1)

g(x) = (El-22 -IE12122)n-2 
IXrn-2

7r#[(n - 1), (n - 2)] (XE 2 2 + E,1)2(n-1)

Theorem 9 Let W -, CW2(nE) where W = 0, a >O, b>O, and
0 b

it > 1. Let x = 2. Then the cumulative distribution function is given by

F(x) = Pr{x > c} = g(x)dx

(E11F22 - IF1212)n-2 n- 1 k-l)

=r/3[(n- 1) (n -2)] 22+ ki (cE 22 + ,)f+k-

This theorem is supplied by me.
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Proof. By theorem 8 the density function is

g () ( 22 - 1E1212).- Ixjn-2

=r#l[(n- 1) (n- 2)] (XE22 + EI1)2(n1-)

Since a > 0 and b > 0, we know x is real and positive. This permits us to

drop the absolute values signs. Then, apply theorem 144. We note that since

n > 1 we can use the solution for k < p - 1 in that theorem statement. Then

0f dn-2x

+ (x 2r 2  r11-2(n-1)

00

-- (n)-2 (ni - 2) (()k ( +- k) (X- 2 2

C

E2 E (kfl n:( 2 ~k( - -k)( 2 + )1k

=()n-I n-2 (n - 2) (_r + I (CE22 + Eii)I--( - 1 '-n-2(n- 2) 1 (_E,,)k
Fo k n + k + C2 • E11)n+k-1

The full answer is

F(x) = Pr{x > c}

(-C,,E2 - IE1212)n-2 n-1 n-2 (n- 2) 1 (-y,,)k

7rP [(n -1) (n - 2)] 2\-2 k ( 1+ _k 1( +,)n+k-I
k=k (CF2 2

0

Corollary 2 Let W = UL 2UH be the eigenvalue decomposition of W

CWp(n, E, b). Then UTMWU = L2 is distributed according to

CWP(n, UHE2U, UH6(J)
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Note that U consists of the eigenvectors of W, which generally are not

the eigenvectors of E. Thus E is not diagonalized by this transformation.

CWp(n, UHEU, UH6U) is the distribution of the sample eigenvalues of W =

XHX where X has the complex matrix normal distribution CNn,p(p, I, E).

This is an application of theorem 54.

Corollary 3 Suppose that we define a p x 2 matrix C = (cI, c2 ) such that the

Hadamard product cl ® c2 = 0. Then look at CH L2 C. Suppose

1 0

1 0

C= 0 0 =(cI,c 2). (6.13)

0 1

0 1

Then

CHL 2C (I + 2

This is now distributed according to the second order complex Wishart distri-

bution,

CH L 2 C , CW2(n, CHU"EUC, CIJUHbUC)

If we know that the mean of the complex multivariate normal distribution is

zero then 6 = 0, and the third term in the distribution notation is omitted.
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Let a = cHL 2 c1 = 11+l1 and b = cHL2Lc 2 = 12+12. Then Equation 6.4 is the

probability density function of the ratio of two disjoint linear combinations of

eigenvalues of the sample covariance matrix where the underlying data sample

of size n is distributed according to the zero-mean vector complex normal

distribution CNp(O, E). The subscripted values Fl1, r12, and E 22 refer to

the partitions of CHUH EUC and not to partitions of the original population

covariance matrix E.

Although this density function is for a simple test statistic

_ cjL 2 c,C~f L2 C2
T - c•IL'c 2

interpreting the statistic is not as simple as a modification of this statistic.

Instead, consider the average of sample eigenvalues that make up a and b. Let

m, be the number of sample eigenvalues picked by clL 2ci, and let M 2 be the

number of sample eigenvalues picked by c•L 2 c2. Look at the test statistic

S-cHL 2c m2 cH'L2 ci

M2 i2c 2 -- mlc2L 2 c 2

When all the sample eigenvalues are equal then the test statistic T14 = 1. The

further T14 is away from 1, the averages of the sets of sample eigenvalues are

more different. Thus, when T14 is very close to 1, expect that saying "the

corresponding population eigenvalues are all equal" to have a small chance of

being in error.

So that the computation of the density of the test statistic is not altered,

account for the weighting done in the averaging process in the vectors cl and
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c2 . Define a p x 2 matrix C = (c1 , c2 ) such that the elements of Ck pick out the

sample eigenvalues of interest, and the nonzero entries are the reciprocal of the

number of sample eigenvalues extracted. Let the sets of sample eigenvalues

chosen be disjoint. Then the Hadamard product c1 0 c 2  0. Look at CHL 2 C.

Suppose

1 0

C= 0 = (c1 ,c 2). (6.14)

0 1

o

Then

o12 + l)/m2)

0 (12_+ 12 )/M

For this simple example, m, = 2 = 2. Then T 14 = HL2

Now we know x > 1 since Am" > VpM2+1. We are interested in testing

if x is significantly greater than 1. Let c > 1 be some critical threshold we

want to test against. If c is a detection threshold, then this is the probability

of detection for a signal-to-noise ratio of x in "linear" units. For SNR =

d = 10logx, then x = 1 0 d/10 = 10 SNR/IO for SNR given in dB. SNR here is

interpreted in the sense of [49] with noise measured in the same bandwidth

signal is measured in.
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6.2.2 F# in MUSIC

In this section, an statistic with an F-distribution is derived for examining the

decomposition of a received signal-plus-noise plus noise data set as constructed

with the MUltiple Signal Classification (MUSIC) technique. The motivation

for this is the work by Schmidt (1986) [238] and Wax (1991) [282]. I will draw

most heavily from the second paper to develop the assumptions. All of the

distributional work is provided by me.

Let a(O) be a p x 1 steering vector for an array of p sensors in an array

having a fixed arbitrary geometry. Assume that the signals from q sources

arrive at the array. Each source si is coherently processed by a corresponding

linear beamforming function a(Oi). Assume that the stochastic signals are

independent from the noise received at each sensor. This is the signal-aligned

beamformer case of Monzingo and Miller [185].

Let

Ajq] (0) = [a(O,),a( 0
2),. . . , a(Oq)]

Then A[qJ (0) is a deterministic p x q complex matrix whose column vectors

span the vector space which contains the signals. Note that some of the noise is

also in this space. Let s(t) be a q x I vector of the signals at the array reference

point at time i. Let n(t) be a p x I vector of the random noise appearing at

time t at each sensor. Then, let the beamformer output for signals arriving at
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the array reference point at time t be given by

x(t) = A[q] (0) s(t) + n(t)

Obtain independent samples from the sensors at M different times,

(t1 ,t 2,. ,tM)

Let

SqXM = [S(ti),''',(tM)

NpxM = [n(t 1),. ,n(tM)]

XPXM = [x(ti),. ,X(tM)]

Then

X =A19 (0 ) S + N

To complete the problem description, we need to know something about

the distributions of S and N. Let the noise matrix N be distributed accord-

ing to the matrix complex normal distribution having a mean of zero and row

covariance E. Thus N , CNp×M (0, Epxp, IAf). Let the signal matrix S be dis-

tributed according to the matrix complex normal distribution having a mean

of zero and row covariance R. This is stated as S -, CNqxM (0, RqxqIM). By

theorem 41, we know

A(q] (O)pxq SqxM - CNp,M (O, ARAH, IM)

We sum the independent random variables according to theorem 48 to get

X = A[q](0) S + N - CNp,M (0 + 0, E + ARAH, IM + IM)
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- CNp,M (0, E + ARAH, 21M)

Note that the presence of the scalar 2 came from the sum of the two column

covariance matrices which each are IM. By lemma 13 we know that the row

and column covariance matrices are not unique. This is good here because

scalar multiples commute between these matrices. Therefore,

X - CNp,M (0,2(E + ARAH),IM)

We will need the column covariance matrix to be an identity matrix to form

a complex Wishart distributed random variable.

The next step in MUSIC is to find an orthonormal basis for the space

spanned by the beamformer when adjusted to coherently process signals with

parameters 01, ,Oq which we usually associate with direction (but this asso-

ciation does not strictly have to hold). We find the required orthonormal basis

by performing a QR decomposition of A[q] (0). Recall that Q is the orthonor-

mal matrix obtainable by the inner product iersion of the Gram-Schmidt

process. Because the symbol R is alre-dy in use, let the triangular matrix

factor from the QR decomposition be T. They by proposition 67, A = QT

where QHQ = Iq and T is an upper triangular q x q matrix with positive

real elements on the diagonal. Alternately, we can apply proposition 71 to get

A = QT where T is a lower triangular q x q matrix.

The matrix Q is called subunitary, and it forms an orthonormal basis for the

space spanned by the columns of the signal-directed beamformer A[q] (0). We
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can continue to construct vectors orthonormal to Q and mutually orthonormal

to each other until we have a set of p vectors. These last (p - q) vectors form

an orthonormal basis for the space orthogonal to the space spanned by the

columns of A. Then we have the p x p orthonormal matrix

G = [Q, V]

This matrix G is special. Observe that

tt0×.(QH QX )q×M Y

=pxpXpxM = Xpx],-
v,_ H , (v"X)pqxM z

This has partitioned the rows of X into disjoint matrices Y and Z. Let us

examine these more closely, recalling that X = AS + N.

Since Q spans the same space spanned by A, then all of the signal compo-

nent lies in the space spanned by Q and none of the signal component lies in

the space spanned by V. All of the data in the space spanned by V consists

of only noise. It is in this sense that the space spanned by Q is called the

"signal subspace", and the space spanned by V is called the "noise subspace".

Caution: these designations are basically useful tags, but you must remember

that some of the noise is also in the space spanned by Q. Not all of the noise

is in the space spanned by V. This is consistent with hearing noise when we

listen to a beamformer output.

Let us find the distributions for Y and Z. Once again, apply theorem 41
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to get

GHX , CNP,M (0, 2GH(E + ARAH)G, IM)

Take a closer look at the column covariance matrix.

2GH(E + ARAH)G =2 2(E + ARAH) Q V

V H

( QH(E + ARAH)Q QH(E + ARAH)V

=2

vH(r + ARAH)Q vH(, + ARAH)V)

Since all of the signal is projected by Q onto the space spanned by A, we know

that VH = 0 and AHV - 0. Thus we get

2GH(E + ARAH)G = 2 ( QH(¶P+ARAH)Q 
0 )

0 VHEV

where QH P(E + ARAH)pxpQpxq is q x q and Vj q)XP ipq

(p - q). Therefore

(Y) NMO 2  QH(E+ ARAH)Q 0X -- ~CNp,M 0, 2 ,IM

Z 0 VHEV

By theorem 43, Y and Z are independent. Since

Iq OqX(p-q) Yqxm
Zlp-q)x M

we again apply theorem 41 to show

Y - CNq,M (0 ,2 QH (E + ARAH)Q, IM)
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Similarly,

0 (p-q)Xq Ip-q )=XM Z(p-q)xM
Z(p-q)×M

is distributed as

Z - CN(p-q),M (0, 2VH•V, IM)

To form complex Wishart random variables, the underlying matrix complex

random variables must have independent rows. Apply corollary 9 to show

yH , CNM,q (0, IM, 2 QH(E + ARAH)Q)

ZH - CNM,(p-q) (0,IM,2VHZV)

By definition 6 of the complex Wishart distribution,

WY = yyH , CWq (M,2QH(2 + ARAH)Q)

WZ = ZZH ' CWp-q (M, 2VHEV)

Note that since Y and Z are independent, we know Wy and Wz are indepen-

dent.

We now can take the ratio of arbitrary quadratic forms to obtain an F-

distributed statistic. Apply theorem 6 where we observe that Wy and Wz are

from central complex Wishart distributions. The noncentrality parameters 61

and b2 of the theorem are zero matrices. Thus, we obtain the ordinary F-

distribution, without the complications of noncentrality. You can define C1
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and C2 in the manner done in the previous theorem. Thus, the statistic

F = MCIHWyC 1 C22VHEIv VC 2MC2WzC2CjH2Q1 1 (E + ARAH)QC1

F = CHWyCICHVH>2VC2
C2HWzC 2 CH1 QH(r + ARAH)QC1

is distributed as

- dncF(2M.2M, O,O) = F(2M,2M)

If the noise is modeled with E = a 2I, then

F = CcIHW OC 102C112

C2HWzC 2CiHQH(o2I + ARAH)QC1

C1HWyC 1 0 2 1C02112

CHWzC2 [02 IIC[112 + CHQHARAHQC,

If you require IICI = 1 and lIC 2112 = 1 this further simplifies to

F = CWYClO2
C2WzC2 [ar + C QHARAHQC1 ]

Under the hypothesis that q = 0, then Wy = 0, R = 0 and F = 0, a useless

triviality. Under the hypothesis that q = 1, then Wy and R are scalars. We

get

F = CWW 0 2 R F(2M, 2M)
C2HWZC2 [0,2 + R? IIQHAI I2IF

If I1a(O)II = 1 then Q = A and this further simplifies to

F= W•WzC2  R" F(2M, 2M)
Off WZC 2 [ar2 + RI

01
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6.2.3 Test that Requires Only Partial Knowledge of

the Covariance Matrix

The real variables version of following test statistic appears as Theorem 3.2.20

in [ 187] and it is nearly the same as the sphericity test given by Anderson. The

form of the density is tedious to compute, and I have evaluated it completely

only for the bivariate case.

Independence of Sphericity Test Statistic and the Trace Function

Theorem 10 Let A - CWp(n, VIP) where n > p is an integer. Then u =

det A and v = trA are independent. This is a complexification of Muirhead
F tr 7A]

[187] theorem 3.2.20.

Proof. Let D = diag(2,..., 12) contain the eigenvalues of A, and then by

corollary 21

dF(D) = A2 , Cr(n)C.(p) i-(1 _ 12)2 (rD)
A~p Cp~)Cl,() =l i i<i

Change variables from 1(•, ,) to (p , yN,"" t yh ,) given by 7 = E =

P i=1

det A P 1j2 P

Ne1 i=tl1

Note that u is bounded on the closed interval [0, 11.
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Note that 1' > 0 are all real numbers, which affects the form of the Ja-

cobian. Unlike many other changes of variables in this thesis where Jaco-

bians needed to account for complex variables, here we can use Jacobians we

have computed for real variables. First, change variables from (12, '12) to

(12,... , 1.2, r). The transformation matrix is the familiar

0

/P-1 0

0

P P P P

which has determinant 1. The Jacobian isp

j[(12,...,12) __+ (12,, . , '1_I,,Y)] =P

The first step in our change of variables is given below for

C 7rP(P-1)
C =2 PnCrP(n)CFv(p)

We obtain

dF( 1,. ',It-,q) = dF(DI)

= 
_ex 

p (- 1 p ?) 1 2(- -p ] q _

× rI (1?-) _ T 112_p•71+ E 2I2 p(dD,)
Li<j<P I L Ii=1 j=,
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The transformation matrix from 1l~ _J2 7) to (y1,, ,YP.1, 77) is

which has determinant ( 1 P-, The Jacobian is

Thus

dF(y,,...y-,q Lcef dF(Y)

~ [ii (u~i P -+1Y -

Now factor the joint density into a form having a term that is a function

of only 77.

dF(Y) = C (-L 7) (n-P)(P-I) 7n-p 772 (p--l)(p- 2 )/ 2 772 (p-1) 7?P-1 P

~~~Y [Y P [+ E Yj (<<pdY-

Collecting powers of 77 gives us

dF(Y) = C(_,ýu)7unp- [n-yfp] [1(i~ - y3 )2] (dY)
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p-I

where yp = p - E yi is used for shorthand notation and is not part of the
i=1

change of variables, and the exponent of q is computed from

(n - p)(p- 1) + (n - p) + (p- 1)(p- 2)+ 3(p- 1)

=p(n - p) + (p -- 1)(p + 1) = np - p2 + p' + p - p - l = np -

By the Neyman-Fisher Factorization Theorem, we see that 77 is independent

of (yi,""", yp-i). yp is a function only of (yI," " , yp-i), and u is a function only

of (yi," , yp). The variable v = tr A is a function only of 77. Therefore u and

v are statistically independent, which proves the theorem. 0

The statistic u = dt is used to test the hypothesis Ho : = A2Ip versus

the alternative hypothesis Ha : E :A A2IP for some fixed (but not necessarily

known) A2. When H0 is true, the cumulative distribution function is given

by F,(x) which depends also on the parameters p and n. When the sample

eigenvalues are equal, then u = 1, which is the maximum value of u. We know

u < 1 by Hardy (p. 17, Theorem 9) [102]. We know from Okamoto [197] that

the sample eigenvalues will all be different with probability 1. So, the smaller

u is, the more likely E = A2IP is not true. We want to choose a value x so

that when u < x we can decide to reject H0 : E = A2IP with a probability of

rejecting H0 when H0 is true being less than a. Thus, we choose x so that

Pr(u < x Ho : E = A2Ip) = a = Fu(x)

This is a one-sided test.
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To obtain the marginal density dF(yl,-. YP-I), integrate 77 out. Examin-

ing only those terms that contain 77, evaluate

I= i exp(- ii)7,nP-'dr/

In the integral f~o e-"x m dx given in corollary 48, let a = P and m =np- 1.

Then

Thus for

C1 = CIP (np - 1)!rP(P- 1)

p=p-1-Cirp(n)Crp(p)

then

dF(yi,. ,yp-,) = C11 [ft ,-p (y_ - • (d(y,-..,yp-,))

Because (yi," , yp-1) is independent of i1, we find

dfl =dF(y', • - Yp-1,71)
dF(i/) = (yp-1)

(np - 1)!

This is the probability density function of the average of the sample eigenvalues

of A ,- CWp(n,A 2Ip). To find dF(tr A), let x = tr A = p7) be a change of

variables.

dF(trA) ( exp trA (AP- (trA)P-' 1d(trA)
dtA)-(n - 1)! /2 G "p
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or

1 1 1\t A
dF(tr A) = x2.p(np-l!exp( T (trA)(-Ad(trA

We get another identity by looking at theorem 88, since

E{trA} = j (trA)dF(trA) = n(trA2 Ip) = A2np

Then

0 (tr A) ' exp(-1 tr A)d(tr A) = A- p+l)(np)!

for A - CWp(n, A'2I). This same result is more straight-forwardly evaluated

using the definition of the gamma function, letting x = tr A.

Sphericity Test Statistic Density Function

We would like to find the density function for

_det A P J2 P

- E=-' =ly (6.15
u tr A] 77 i

P
We know yi p, and the joint density of (y,,.., yp-_) is

dF(y,,... ,yp_,) = C', [y n-] [(yf - Y] (d(yi,... ,y,,_))

p
We need to do a change of variables u - [I yi, and zi = y. for 2 < i < p - 1,

and then integrate out the zi. The challenge is to handle the nonlinearity

p-1
introduced by yp = p - Z y, when evaluating both the (y, - yj) 2 terms and

the Jacobian. The issue arises in evaluating y,. We compute the inverse

mappings now.

y= = zi, 2 < i < p- 1
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YP -- P - Y2 - Y3 Yp-1 - Y1

U = YIY2 'Yp-lYp - YIY2""Yp-I(P Y2 - Y3 ..... Yp-1 - YI)

-YY2"Yp-I(P- Y2 - Y3 -.. Y_,) _ Y2.YPY-I

p-1
Let v = Y2Y3 ."yp-1 and w = E yi as a shorthand notation. Then u -

i=2

y1v(p-w)-y2v. Note that v = z 2z 3 ... zp1 and w = z2 +z 3 +..-+zp-l.

Solve for Y, in terms of the new variables using completion of squares.

y2v - yv(p - W)= -u

1 1 ( _W2= _U 1 P )
Y-2 (-w) + -2y) 2 - -- + -(p- )v

1 21 2 u

(y - -(p-_w)) = -(p-w)2_ U
2 4 v

Y 1 [- u]- ) 4
S- (P- + 4[(p - W)2 -

We have two different values of y, that, together with (y2,.-., yp-,), map

into the same value of (u, z2 ,. zP-l). Let dF(u, z 2,'., z- 1 ) be the joint prob-

ability density function of the transformed variables. It will be the sum of two

functions representing the transformations from sets A1 and A2 into the set

B, where set A, corresponds to all values of y, obtained with the (+) solution

and A2 corresponds to all the values of y, obtained with the (-) solution. To

write these functions, we need to evaluate the Jacobian belonging to each Ai.

Let

(p(Yi,'" -, Yp-,) = de(yi,... -, yp_,)
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to make the following discussion unambiguous. Let gi be the inverse mappings

from B to Aj. Let Ji(y -+ z) = - denote the Jacobian that transforms

variables (y ,'",yp-1) in Ai into (u, z 2 ,. zp_.I) in B. Then

dF(u, z2,. zp-.) def dF(Z) = po[g 1(Y)] 1J1 (Y -- Z)I + p[g2(Y)] 1J2(Y -+ Z)

The Jacobian will be tedious, but straight forward, to evaluate because

a='6ij, (1,J) > 2. The Jacobian will thus have the form

2Y-i ?m ... ag

Oz 2  8z 2  Oz2

1J,(Y- Z)I= det a ! ... 2frP'iOz'j 9z.3 O9z3

a_ ,_ 2 . ... o_• _•

8aAa 0 0

Ouz

= det 8z22=

a U

The other terms drop out of the expansion of the above determinant down the

first column because the cofactor matrices of aL all contain a first row of all

zeros. Therefore, the determinant of those cofactor matrices evaluate to zero.

Therefore, we do not have to evaluate the messy terms (a-) Now, evaluate

Sfor A1 and A2 .
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In A 1, we use the (+) solution for yi-

,Oyl 2{ •u½

u- (P-I)+ (p - w)2-

1 1 [[1w2U] (-P; {~v! w 2~}
- -] -2

[2 -{(p - - 4uZ2 .Z 1

= {v2t2 - 4uv}-1

for t = p - w.

In A2, we use the (-) solution for Yi.

ay, a 1 ( W)- P _ZV2 _ l U 2

2 (P [ w --- • 1- 2

=~~ 12v --
= {(vp - vw)2 - 4}ut}

= {[Z2 z,-(p z2 ...I z(,)] -4uz 2 ... zp_, 1 }-

= {, 2 - 4ml-½

for t = p - tv.

Note that au Now we know we can simplify our expression

for dF(Z).

dF(Z) = ýp[g 1(Y)] 1J1(Y -- Z)I + p[g 2(Y)] 1J2(Y - Z)I
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= {I[g1(Y)] + p[g2 (Y)]} IJ(Y - Z)I

where

IJI = {[z 2 ... Zp....(P - Z2 . ZP. 1)]2 - 4uZ2 .. Zp-q}

Concentrate on evaluating W[gi(Y)I. The challenge is to find a convenient

P
expression for j .(y, - yj) 2. For 2 < i <j < p, the easy terms to evaluate, we

i<j

get (z, - zj) 2. Consider (y, - yp) 2 for 2 < i < p. This is

(Yi -P+YI + Y2 +"" + yp-1) 2 = (Y# _ p+ z, + w) 2

= {(p--w)+ [(p p+w+Zi}

where w = z2 + z3 +... + zp-1 and v -z 2z3 ... zp-. Let t = p - w to simplify

slightly to get

U] {1 + i1't~ ~ +i [1t= (y, _ yl,)2

This is as simplified as I have been able to get. Now consider (y, - y3 )2 for

2•<i<p-1.

(Y, - Y,)2 = II+ [12_-] _ zj2

Finally, we evaluate (y, - yp) 2. Here, we have

(Y _-Y-P)2 Y1 - P-- Yi = -+ P YI+ Y2+ + Yp-}2

12y _ P W2-~, -ti -- t + t_4u1= jJ 2 t 4u

V V
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Putting this together, we find

h1 def (y(,•- = (yl - ) - y2j5 (I - 2P)2

I ~ de (Y1 ~ ) ZJ)}{t}- Y

= i tj=2 I2< j2 i

=11(z, Za)2 { _ + t -[1- +t2 _)

wheret =p-w =p-z 2 -z 3 -.-. zp-l and v= 2Z3Z...zp_1. The term

P y -= u"- is true for both the "plus" solution density gi and the "minus"
jil

solution density g2. So,

p[g,(Y)] = C10-Ph,

Now, evaluate ýp[g 2(Y)], which corresponds to the (-) solution for yi. We

P
evaluate .[.(y1-y,)2 once more. For 2 < i < j < p, we get (y,-yj)2 =(z-zj)2

i<j

as before. Consider (y, - yp) 2 for 2 < i < p. Then

(y ~ z 2  4 (-- 2 4

This differs from the previous evaluation by the sign change for the coefficient

of t2 _ 2. Now consider (y, - yj) 2 for 2 < j < p - 1. This is

(YI - Y 2 = [
1 t2 - ] _- )

Finally,
(yI -_y) 2 = (2y,) 2 = (t 2(t - u _ ) t

v V



183

Thus

p-Ij

h2 d~ef t- t- -z t-

x 7 (Zi _Zj )2} [1t2j] +)2 }

1,2<i<j I, 2<i 2 4

The probability density function for the new variables (u, z 2 ,.., zP- 1 ) is

dF(u, z2, ,'.zp- 1) = dF(Z) = Cjun-P{hi+h 2}[v2t2-4uvI-½(d(u, z2,... ,zp))

(6.16)

where

C1 =(np - 1)! irp(p-1)
pnP-l Crp(n)Crp(p)

To find the density of u, integrate out (z 2 ,' zp- 1 ). The limits of integration

are

(0, Zk-1) for zk where 3 < k < p -1

(0, oo) for z2

The case of p = 1 is trivial. The case for p = 2 is tractable, and a closed

form solution is presented for F,(x) = Pr(u < x). The case for p = 3 is tedious

and should be evaluated by some automated means. When p > 3, the general

approach above is the appropriate tactic. The required integration is tedious

for the general case. Let us look at some small values of p.

There is no point in doing an evaluation for p = 1. When p = 1, then

u = 1 since I, = 9/. Thus Pr(u = 1) = 1.

We are still dealing with a special case when p = 2. Let us go back to
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basics.

dF(12, 12) = 7r2 11 [ +~l 12) 122n21- 22
F 2 CF2 (n)CF2(2) p - 1A2  + 21 1 2 1 )(dD)1(12 +- 12 1+ (12 )i

Let q/= (/1 + l•). Note: l = 2q - l•. Then the joint density of (1•, ,/) is

dF(12, 7)= Cexp 2 (12),- 2 [P - 12]n-2 (212 - pq) 2 p(d(l12,17))

where

C=A~
A4-Cr 2 (n)CL2 (2)

We note that

CF2 (n) = irf(n)F(n - 1) = ir(n - 1!n- 2)!

and

Cr 2(2) = r(!)(O!) =

Let yi = I2/77. Note: Y1 + Y2 = p = 2. Let u = y1y2 = yl(2 - y1). With this

change of variables, the joint density of (yI, 77) is given by

dF(y1 , 77) = C exp (2 1) (i7y,)n 2 [Pi _yl]n-2(2y, - pT77) 2?Jp(d(yl, T7))

= 2Cexp (-271 ) 2n-ly n- 2 [2 -_yIn-2(2y,- 2)2 (d(y1 ,77))

We do some intermediate bookkeeping to help us find the density of yi.

orexp (- A 277) d1  =~ (A22 n -1I)!

Evaluating dF(yi), we get

237r2(2n - 1)! A4 -

dF(yA) = n(- _ y)!(n- 2)!r 2- 1)2

Amie -1!n 2)r2Y (2 d
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(2n - 1)! 2 2

22 n- 3 (n - 1)!(n - 2)! -1(yl )dy

Since yj and 77 are independent, we see that

23,2 . 2n-1 n-[2 - yl]- 2 (yl 1)2

dF(77) = dF(yi, 17) = \
4nir(n- -)!(--2) exp - -

dF(yi) (2fl-3 ) _ n-2 y( )n-2(y, - 1)222n-3(n-1),(n-2)!Y1 y• -

(_,)2nl
_ \k2 exp, _2r7) 1 2n-1 dr/

(2n - 1)! H 2

Our assurance this is correct is that it integrates to 1.

Now to find u = y1(2 - y1 ) for the case ofp = 2. We see that u = 2y, - y2

implies

12 2y1+I= I _U = -Y )yi-2y +l 1-u (y'-)

Solving for yl, we find yi = 1 + ±v 4u--u. We let A, be the set of all

Yj = 1 + (1 - u)1, and let A2 be the set of all yi = 1 - (1 - u)½. In A1,

the critical computation in the Jacobian is 8= = (1 -u)-1, and in A2 it is

!I= (-u)-1. Note that = IJI is the absolute value of the

determinant of the Jacobian matrix. Thus, for the special case of p = 2,

d (u= (2n - 1)! )
(= 22n_3(n -1)!(n - 2)!)

(I _[1 + -u)½_]-2[1(1u)I]n-2(1u)½]1 +

[n-2(1- u)2])-2 [1 + (1- u)1]-2 [-(1- u)½]2} [•(1- u)-Idu
_ ( (_2n - 1)! _ ) '[I + 1 u ,]n-2 n1- 1-) 2

(22n-3(n - 1)!( - 2)!)(I - u + (- u)(I ( -u du

dF(u)= (22n-3(- 1)!( - 2u)!)( u IU-2 du (6.17)
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The cumulative distribution Fu(x) = Pr{u < x} is found by integrating

dF(u) over the interval [0, x], where x E [0, 11. The integral is evaluated by

successive application of the chain rule. Note that dF(u), and hence Fu(x),

is independent of A2. We truly are testing sphericity without regard to multi-

variate diameter.

From our combinatoric identity, given in proposition 103 with m = n - 2

and a = -, we see that

F~(x0= 0 (2n - 1)! 2)! i: U -2u1
Fu (x) dF(u) (22n_3(n - 1)!(n - 2) u 0 1 u)du

X

(2n - - n-2 ( Un-k-2( U)k

3 x 22(n-1)(n - 1)!(n - 2)! Z (k+)

0

(2n - 1)!
F,,(x) = 3 x 22(ni-)(n - 1)!(n - 2)!x (6.18)

n-2 (n;2)
X (n - 2)! ( 1

x ( n - ,! _T- ) ., s - (1 - Xr) • 2 = t k ½ X -k-2 tl -- k

for p = 2 and finite n. When n = 3, Pr{u < } 0.19.

The number of terms increases explosively with the dimension of the ran-

dom vector. Even though the case of p = 3 is still a simplified special case,

the number of terms is unmanageable using manual methods. In this case we

want to find dF(u, z 2 ) and then

df(u) = Z2 dF(u, z 2 )
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Reviewing some notation, v = z2 and w = z2 . Evaluate

p=3

1J1(y, _-j = (yi - Y/2 )2(y - Y3)2 (Y2 - 3)2

i<j

where Y3 = 3 - yj - Y2, Y2 = z2 , and

(i p -w)[( W) 2 4

Note that Y1 - Y3 = 2y, + z2 - 3 and Y2 - Y3 = yi + 2Y2 - 3. There is both a

(+) and a (-) solution. The (+) solution is given by

hi = II (ui - Y+ 1(3 - Z2) + (3 -Z2)_ U Z2
i<j 24Z

Z2 )

S[(3 - Z2) + ((3- z21 - + z2 - 3

The (-) solution is given by

2• [Iy;-yJ• (3 - z,) - (3 Z2 _1 - -Z2
i<j 24Z

x2

x [(3 - Z2) - ((3- Z2/ -2 4u 2• + Z2 -3

) 2 

12

Then

dF(u, z2) = CIu- 3 {hi + h2 } [z•(3 - z 4uz21-½d(u, z2)
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where

C6 (3 2 1) K (3n -1)!
33n-i CF3 (n)Cr 3 (3) (n - 3)!(n-2)!(n - 1)!

To get the density of the statistic u, integrate over z2.

Although a symbolic mathematics processor could evaluate the required

integral over for small dimensions in a reasonable time, I think the numeri-

cal accuracy resulting from its evaluation would be worse than obtained by

beginning with numerical integration.

6.3 Tests Motivated by Krishnaiah

In this section I provide joint distributions of some desirable test statistics

and associated nuisance variables, when the sample eigenvalues obey a special

case distribution. The distributions represent the nearest approach in this

thesis to solving the original thesis question. These tests were motivated by

Krishnaiah's works. Derivations are independent of Krishnaiah's work..

Krishnaiah has been a central figure in the development of tests on eigen-

values, including those making use of concepts from James' work on zonal

polynomials and complex variables. His work is reported primarily in reports

for the United States Air Force Aerospace Research Laboratories, and may

be obtained through the United States Department of Commerce National

Technical Information Service. The ordering information (AD numbers) are
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included in the bibliography of this thesis. These reports may be character-

ized by their insight, briefness, and use of a lemma for integration which I

have not yet tried to prove for the context of this thesis. Krishnaiah's works

are reported in integral form.

The material that follows was directly motivated by the problems which

Krishnaiah solved. I have not worked out all the details of Krishnaiah's work,

so I have not yet made the necessary connections between his work and the

work which follows. That is an important effort in the context of order esti-

mation to be pursued later.

In all the work to follow, let the sample eigenvalues D = diag(l,.-.-, l)

estimate the population eigenvalues A2 = diag(A ,..., A'). I will assume the

following special case that the sample eigenvalues have the joint density func-

tion of D given by

dF(D) Idet DI- ) exp [•k-12[)2] (dD)
l[det A21 Crp(n)Cr,(p) j k= -k[A j ( I2 (

[ Jdet DI"-- r'('p- ] exp [-A-2D] [ 1l ? _ J, (dD)[[det A2]n CFr,(n)Crp(p)] tx - IdD

= [det A2]n crP(n)cr,(p)0o--,D (l-ri(d) (.9

This is the case when D - CWp(n, A2) such that D is further restricted to be

diagonal. Thus, the elements of D are independently distributed X2.

This originally was considered as a result of the observation that zonal

polynomials have the property that Zm(UHXU) = Z,(X) for all U E U(n).
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This leads to saying Zm,(A) = Zm,(D) and Zm,(YA-) = Zm..(-A- 2 ) Further,

noting that oFo(-E 1 , A) = etr(Er1 A) and

oFo(-EW, A)= I~ Z. Z(- Y-)Z.m(A)
d=0 d!Im. =d Z.M(I

and substituting this into the density function

dF(D) = [ Idet DIm n- IpP 1)
I[det A2]n CJ7p(n)CFp(p) J

Z.m(- Y ) Zm.(A)] [(1? _ 2J)2](D

2]tn~E [op.y(-r1 A)] [j1l U) (dD)
[detA 2] CL'p(n)CFp(p)] 100j I<

= [det A2n I,()rp(pI)] [etr(-E-1A)] Hlz- )] (dD)

led me to consider

dF(D) [ Idet DIm n- 1PPI
I(det A21n Crp(n)Crp(p) J

00 Zm(-A 2)Z.(D) 1 rl(12 - i)2] (dD)
LdO0d ImI=d Zm(I M [~ I

=[[ddet Djmn 74l) etr(-A 2DI [1711?- (dD)

The problem with this approach is the implication that etr(-E-1 A)=

etr(-A-2D), which is not true.

6.3.1 Joint Density of Ratio of Adjacent Sample Eigen-

values
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Proposition 1 Let D = diag(l,..., l2) be sample eigenvalues corresponding

to A2 = diag(,, A.,2) have the density function given in equation 6.19.

Then the joint density of

V = (0,,... ,op), Oi = 1
i+1

is given by

•rv~p-1IrPnkp2) 1 / (1 + A2+0- -k+
dF(v) = [detA 2lCFrp(n)Crp(p) [2kp-1 + )](

X on+P-1+2i (OOj+l"... Op_J)2 (Oii+J'... O _l - 1)2 (dv)

b
where A (1 + 7k) is a nested sum. This was motivated by the suggested trans-

k-a

formations used by Krishnaiah and Waikar [144] related to their equation 4.3.

Proof. Starting with equation 6.19, change variables from ( l,.-.,l1) to

(01, O"p) where
t?

Oi = fi'i+I = -- :

1< i < p-land 0p =Pl. The transformation matrix from () to

(01,.." Op) is given by

212

1_7T=
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The Jacobian, in terms of 1?, is given by Idet T-'I det DI. In terms of 0,,

we find

3

O 1- 1 J 2_ l2ol = OPOP_1
p

0 p = l•2 l = Op = 0 p

In this form, the Jacobian is given by

ael a02  ae0

_• 8
02 ...a01 ae2  86,,

J= det

8-1 aw _ _ ... a____801 a#2  806

86, 882  86,,

0 20 3"" 0 p 0103 "Op " 0 ""-p

0 03 ".Op .. 02""..0-

=det 0

0 0 ... 1

J= (02... O)(O3 ... O)(O4 .Op)".(OP-IOP)Op 1

- pop--op•o-3 .. •o = 1-I -
p p-I p-2 302 H "i

i=2
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The joint probability density function of 0 = (0 1,-, 0-p) is given by

dF(O) = 
exp P P

[det A2 ]' Crp(n)CFPp(p) =Ajg)

{t]ax11 [ft 07-P] } {J1 [( P k) - P 01)1} 21 o1}P0-1 d

Note that

E-T2II oj -T- 010 o... Op+ 20203... Op+..+ 2oP-_0o + o

= 1- + OA + 0p-2[+ + + 02[-- +01-1 ..I"fI
P p- P-2 A 2  1

A 2  A 2  A_ A2 A2[l.
A2 A_, A +
=-P?[1 + '2 _P 1 +p-2 2 1

d I [I + Ak+l I Ok

def AO2 _A A +--2k,
p-I k

Therefore

dF(. 7p(P-1) Iex 1r + k

dF(O) = [detA 2]' Cr'(n)Crp(p) exp k=p- 1[ + k

x {fl oi+~ {Ho1 II (0303+1 ... 0P)2 (0i0i+l ... -j1 1)2} (do))

To obtain the joint density of

121 132 . -, (01,,... 0 _,

we integrate dF(O) on Op E (0, oo). We temporarily simplify the notation to

help identify the integration problem. Let

Crp(p-l)
C[det A2]" crp(n)cFp(p)
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SA 1+ iýO]
pk=p-1 I kA

P- H 0 f-P+t

p-1O-I =p-1 i-

i=2 i=
p-i

g192 = nI Oi
1iI

g3 [1(Ojj oj+l .. op1 00, , i .. -j_ 1)2] f(0,0,+, p... 1PJ )2]

The idea is for these to be cofactors of Op,. The justification Of 93 is not obvious,

so we give a little more detail. Let

p-1 p

11 JJ (00o,+l ... 9p)2(0,0, ... -jJ_

i=1 j=:i+i

p-2 ~P
=20_ _ 1)2 JJ[11(331..O)2 (OO+ 3~ 1)2]

- )P 3 + (0303+1 ... Op)] f (9i~i+I ...~ 9-1)2

=~p i? ý(O,,jl ..i~) 17 [2P)HJ+~O~)] [f(ooi .. 0j1- 1)2

At this point, we need another observation. Note that

p-1 p-2 ( )p-1

i~i=2

=(p~ 2(p-p+l) = (p+l)(p- 2 )

Now we see that

,p'(() = 0I0_ _ 1)2O(p+l)(p-2)

p-jj2{j- [Hoo+1... opi)2] [ P _- 1)2]1}
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The following minor bookkeeping will help us. 2+(p+l)(p-2) = 2 +p 2 -p--2=

p(p - 1). We get

__ -~TE) 1) [h'P 0..-(0jj+p0,. - 1)2 }
x I (0,0,+, ... i -PI 1)2] r h1(0, 0j+ 1.. op1200+ . .. -j1 1)2]

Using C, /3, 91 2,3 we rewrite dF(O) as

dF(E)) = Ce-13PO'glo- 92PP1g(O

=Cg1g 2g 3 0+(p-1)(p+I)erCOGPd(01, 02 , Op*,0)

We now integrate, using lemma 62.

dF(O) = Cgig2g 3 d(0i, 02,' . 0I) j 0f+(p-)(p+l )e1 3eP(d0p)

At this point, some more bookkeeping helps us. n + (p - 1)(p + 1) + 1=

n+p 2 -1 + 1 = n+p 2 . Thus

L,= 0 dF(E)) = Cgig 2g3d(0i, 02,. ,9p~1 )#(n+p2 )r(n + p 2 )

To simplify notation, let Vi = (01, 02,. ,Op-i). Then

7rP(Pil)F(n + p 2) F, I) (~2

dF(v) I +de A2 ACI~nCL~p i +l O (np[det ~ A2ncpncpk)I-k\

On~ 0+p-i+2s] {(0,0j+i . 0~)2 (0,0,+l . .. 0,_i _ 1)21](i'
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Substituting L = 9i, but not doing the change of variables, we can compute
s+1

this as

7rP(P-l)F(n + p2) [1+/ ~ 1 k ]-(~ 2

dF(v) = [det A2]n Crp(n)Crp(p) 'p 1p + k l+1

X [ ( 2 -IT 1 2[ e ) (1) ][ {(v

12 12 p- 1

We need a few more notes.

.1 2 p-1 _ _1 _ 23( 12) 12(,+p+) 12(n+p+3) 12(n+3p-2) 12(n+3p-2)

i=1~p- i+2 2

14 14l 14 l-1 4 impliesj 1" ()- Q 2(j-l) 1 P-1

where

p-1 p-1 (p- _p

2(j - 1) =2[-1 - 1 + j] = 2[-2 + (p 2 -4 +- -
j=2 j-12 -

and
lt l1+ .. 3-__ _1 =

12 l1+2 12 p

Just a little more bookkeeping, and we see

12(n+p+1) 14 1 4 .. 14 12(n+p+1)1S112116 ... 14(p-1)1 2 3"' P-_ 1 14138112 . .12(2p-4) 1- " 2.3 4 "'"

1 2(n+3p-2) 12(p 2 -P-4) 2 3 4 P-- 1 2(n+p 2+2p-6)

Putting it all together, the joint probability density function for v = (Ok,'",Op-1)

written in terms of Oi = - is

ir(1 )~+ p2 ) r i~ 2+ -(n+p2)
dF(v) = [det A2]"Cin (n)cF,(p) k + l•+j

Crp~)Crpp) IAlpk=p-ik i
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12(n+3p-6 (dv

Note that when all the {A?} are equal, then the second factor is

,\2[n~p2( + jk ) -(n+p
2)

Note that

1c + ll = 1+ - _-- 1+ 7 [i 1[+±q]]
2 j

2  
j
2

2

!P!2 l1 +

k=p-1 p(2 1,2 ,

So, te secnd fctor ollapes t S - • +- t2+ 2

So, udrthe sonu atrcllahpohsis thao 2 ~w e h est

)i2(nlli)~~q 
+ ,2p 1(l + trD)

function of/v under the null hypothesis as

LrL (L LI)F(n"p2) + AP +

dF(v, I A• = A2)= [det a2]" Cr,(n)CF,(p) tr- -D

J -1 L _
So th eodfcorclasst

•~ k=1 I PIIIIII I
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Krishnaiah and Waiker [144] consider simultaneously testing

Hi,i+l A? = A•2 against

Ai,i+ :A? > A•+1

for 1 < i < p. Hi,i+l is accepted or rejected according to the comparison of

122

l-to a suitably chosen critical value ci,• where

Pr{I< 1--L < ci,,;1<i<p,-11 H} =(1-a)

The total hypothesis H is accepted if and only if all the component hypotheses

Hi,i+l are accepted. The power of the test is given by

1Pr 1 <_ l+---- <_ci,,;1 < i < p- I IA

p-1
where A = U Ai,i+i.

The joint density dF(v) is the appropriate function for computing the

required critical values {cli}. Notice that values for the {IA} must be assumed.

Krishnaiah and Waiker (144] provided the test distribution for the case of the

real variable Wishart matrix. 0

6.3.2 Joint Density of the Ratio of an Arbitrary Sam-

ple Eigenvalue to the Smallest Sample Eigen-

value

Proposition 2 Let the sample eigenvalues D = diag(l ,.-.,lP) estimate the
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population eigenvalues A2 = diag(A ,.-., A2) and have the joint density func-

tion given by

[ Idet DIn-p rP(P- 1 ) 1 [P 1 2 1 2 1.

[[det A21] crp(n)Crp(p)Jexp - k A•J )J

Then the joint density ofv = (01,-.-,Op-1), Oi = - is given by

drP(P 1-)r(np + 2) -1 i]-(np+2)
dF(v) = [dt)-pp + E+

X O n -1 [ 0 p- i 1 ( , _ 0 ) 1 ]x [i- (Oi- 1)2 JI (0i- O) 2  (dv)

This was motivated by the transformations suggested by Krishnaiah and Waikar

related to their equation 4.7 [144].

Proof. Change variables from (12, .,tp) to (01, ,0,) where 0, = .,

1< i < p- 1 and Op = l%. To compute the Jacobian, we note that l = lOi =

OpOi = wi(O). Then

-aw l ... 4,wl Op 0 ... 0
86, 862 86, p
Oua _aM..

det 80, 862 p = det - OP-I

S : ". " Op 0

__ 8• a- ,,, _ 0 ... 0 1
860 a02 86p

We also need to chase some messy subscripts and isolate 0p since we want

to integrate on Op. We tackle the messiest one first.

p p-1 p p-2 p

[1(1? - l2) 2 = II H (l2 - l,2)2 = -l_)2 f (1?_lJ) 2

i<i = ~~ = ~~
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= 1~-1~2p-2 p-1

(IP_1_ IIf 1(1ý _ 12) JJ (12 _ lj2)2

Now substitute in the new variables. We get

p p-2 p-i

1J(12 _ 12)2 ==(Op_1lPp_ O)2 JIj(0,0;, _ 9P)2 fI (0,0P 0jOp)2
i<i i=1jii

C p, p-2 2(, p-I (

p-2 p-1
P2(OP_ _ 1)202(p-2) J7J(o, - 1)202(p-l-) ]1 (0, _Oj)2

p-2 p-i
022p20(-)p-)p(-)P1 JI(o, _ 1)2 ]J (9, _-j

P =1 j=i+1

We engage is some bookkeeping. 2 + 2 (p - 2) + 2 (p - 1)(p - 2) - (p - 2) (p - 1)

= 2(p-l1) +(p-l1)[2(p -2) -(p - 2)] = 2(p -1)±+(p-l1)(p -2)=

(p - 1)[2 + p - 2] = p(p - 1). Therefore,

p p-2 p-i

-(J _ J)2 = Op(p-l) 1(0, _ 1)2 (0, _03)2
i<i = j+

Consider also

12(np) =O 11 07-Popn-p = on-pop~-p)(p-l) 11 Op = Op(n-p) JJ es

Within the exponential function,

11 A2  \2 \2  Op\2 A

I = = t P =12t

Putting it all together, with the Jacobian, we get

dF(~) det A2]1 C1'p(n)Crp(p) e p [o + Pi=
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rP-I 1 rp-2 P-1
Opp -) [11in- PJ 9 ) l( -U]U~uJ

We need to collect the powers of Op.

p(n-p)+p(p-l)+(p- 1) =p(n- l)+p+l =pn±1

Then

dF(E) =[det A2]n Crp(n)Cr,(p) ex OP ±

Onp+1 [ -p (0 _ 1)2 (0, -oj)2]()
We want to integrate out Op, to obtain the joint density of v. Using lemma 62

we see

OnP' exp(-/3Op)dOp = #-(np+ 2) r(np + 2)

where Re(np + 2) > 0 and

1 + -1 0i

The joint density of

1~2 2 'P 2_/

is given by

dFPv) = ~ rf np + 2) [1 P - .I np+2)
d v) [det A2]n CI'p(n)CL'p(p) +Ap-+
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I want to rewrite this in terms of 1?, but not do a change of variables. First,

some details.

I P-1 1 l, 1 2 P-1 1 1,2 1 J 12
p2--AL~ 1P! A2!12 J2 P A

i=1p= pp iit i=i1
P-It P 'Pp-

0I nl•--1 = l2(p1)(n-) JJ ( 2(n-l)

i=1 i=1 
i=1

p-2 p-I p--2 p-i L12 ) 2 p-2 p-i

J-i 1-1 ,=i 3 =l+i 1 p 2

f-1 1 -4(p-I) 14IP I (1 - lJ)2 -- /-4(p-i)(p-2) 1 "Ili -I (l -/

i=i jt~il i=i j=i+i

p-1 
p-I

-" 4(p-1)(p-2)I2(p-2)(p-1) -(I2 _/22")2 =- l;2(p-1)(p-2) 1(12 - 1J2)2

i< 3  i<j

Substituting back into the joint density function, we get

dF(v) = rpP(-P)F(np + 2) P Ji] ("p+2) /•(np+2)1_•2 (-1)(n-p)dv)=[det A2], Crp(n)CF,(p) li=l , I

x 12( 1-4(p-2) [FI(l12 _ 12)2 i-2(p-1)(p- 2) [ 1? _ lJ)2 (dv)

Now to collect the powers of !•.

np+ 2- (p- 1)(n - p) - 2(p- 2)- (p- 1)(p- 2 )

= np+ 2 - (p- 1)(n - 2)- 2(p- 2)

= np + 2 - np + n + 2p - 2 - 2 p + 4

=n+4

The joint density of

• (g, | |)
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is

dF,) = rP(P- 1)r(np + 2)l2("+4) P 1,21 -(4p+2)

[det A2]1 CrI' )Crp(p) i [

S(IdetD I) P n ir 2  
-_ 1)2] (1? _ J)2] (dv)

We can do just a little more collapsing of terms.

dF(v) = [detA 2]np + 2)1P2(n+4) P~ , 1 -(np+2)[det A2]ncrp(n)crP(p) ,i=, l

[Idet Is-"] [(l - lI)] (dv)

When we select the null hypothesis Hi,p : A? = A2 for all i < p, which is

1- 2 •= ,we get

dF(v I A = A 2 for all i) = 7rP(P-)f(np + 2)- -+2l P(+ 4)S [det A•]n crp(,n)Crpgp)

×[tr D]49+2 (I I ]2(r

The alternate hypothesis is Ai,, : A? > A2 for all i < p.

We follow Krishnaiah and Waikar [1441 in constructing the test. We test all

{Hp, } against all alternatives {A•+}. We accept or reject H1 ,p for I < i < p- 1

12
according to the comparison of the test statistic to the critical value Cic

where

Al < O, 1 < i p - 1 IH} = (1-oa)

The total hypothesis H is accepted if each individual hypothesis Hip is ac-

cepted. The power of the test is

1-Pr1 <L' A ci C, 1 <i<p-1l AI1-Pr~l~lp
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p-I
where A = U Ai,,.

i=1

The joint density of dF(v) is the appropriate function for computing the

required critical values {Qi }. Notice that A? must be assumed. Krishnaiah and

Waikar provide the test distribution for the case of the real variable Wishart

matrix. 03

6.3.3 Joint Density of Ratio of Sample Eigenvalues to

Largest Sample Eigenvalue

Proposition 3 Let the sample eigenvalues D = diag(l',. -,l2) estimate the

population eigenvalues A2 = diag(A2,... , A2) and have the joint density func-

tion given by

dF(D)=r [det D=], n exp [ lk (] ? l2)2] (dD)
IkIl[- k=1

Then the joint density of

V = (02,-" Op), Oi = 12t

is given by

dF(v) = [ rP(P] - r(np) 1 + ,=•

[det A2]"C '(n ) F p + E ]l

>X [1 _ 0,)20,-P] II (0i _- 0)2] (dv)

This was motivated by the transformations suggested by Krishnaiah and Waikar

[145].
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Proof. Change variables from (lp,...,l•) to (0 1,. ,0p) where 0i =

2 < i < p and 01 = l1. To compute the Jacobian, we note that

I= ? , = 120, = W,(e)

Then

a6, 8_I ... -a-, 1 0 ... 0801 a02 8,

9 2m 4 9 . . . -1 -U 0 a , " '

J= det 86, 862 aop = det I

,9 - k 8 
W . . . i9_ E 0 - . 0 0 1

a86 892 a9,

We do some subscript chasing to prepare for cleanly expressing the joint density

of the new variables 0, and to ease the integration over all 01.

p p- I [l 2I p

i<j1 j=+ i=2 j=i+l

Now substitute the new variables. We get

(01 _ 010.,)2 (010i -010j)2 - 0( - o=)2 2'1 O j)2

2j=i+l I i=2 j=i+l

= 2(p-l) [4 -Oj)2] [__I2(p0-i) [i fjl(0, _ Oj)]

=012(P'I) [~j__"t(l- 0)'] [:__1••O~] ['__1oj 0.2s] [H JJ j~I+(0,- 0)2]

- "l9 2(p-1) 9 2plp-2) 9 -(p-i)p+2Vl V [41 - j)2] IX(O - O,)2]

I r I li=2j=i+l

0 21 0 -1) 1 (1 - j)2] I"I (I - 92

I rI 11(o (, o
r:31I- 3)]

1 = 2i jil

-- ,,,- -,,,,,,,,,,,,,,,,, ,,,, l-, ~ nm mn mm ~ ~ nnuu
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1 11 ~] 2< (0i - 0)2]

For completeness and consistency of mistakes, we look at

ft i•"-, = i~l-'• ft i&-') - o;- ft o;-,o':-p

12n-p) 1(n-p)(p1) i2 0n-p) ft- n- -

i ~~~1 01O

i=1 i=2 i=2

P P

i=2 i=2

i---1 (%=-- 91 Oti ) -• + "- 01 -- i=2

Putting this all together with the Jacobian gives us

7r~-)exp [o (\2 . ~]( [

dF(O) - [det A2In crL(n)Crp(p) i=2

O P~(v-1) [p(1- )2] [2 (0, - )2]

We do some more bookkeeping to gather the 01 terms.

p(n-p)+p(p-1)+(p-1) =p(n-l)+p-I =np-l

Thus

dF(O) = [det A2]"Cr(nlCr'(p) exp -01 Q +Z )

S[ 0-p] [(_ - 0j)2] [21(9i - 0<)2](dE)

To get the joint density of a test statistic, we integrate out 01. Using lemma

62,

jo' 0•"-e-O' dOI = f3'r(np)
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where Re(np) > 0 and

i=2 A

Using this result, the joint density function of

v=(o,..., ) l22 13
V~ ~ ~ X = 0, P 111' T2?

is given by

irP(P-)7r(np) [ P 0.1nPdIF(v) = dtA] r()r()•+ E T]2

X [ft(I - 0)207-P] [I1(0, _ 0j)2 (dv)

I want to write this in terms of 1?, without doing a change of variables.

This is for obtaining a computation form in terms of the original variables.

P1 0 1 12 1 41 1 p

J-T1 2 -12 + -Tl1)2 + -)- E(--

ji2 j=2 A=2 =22

Onp (i 2 \ "-P l.. pO_,

I I o I- = I I I• I-= =

j=2 =2 1 = = j=2A1 -np I i. 1- 2 (n-p)(p-I) rJ 1J2(n-p)

1ij)i=2 j=2 (I) j=-2

1-4P] 14i ] ( -.-l)2 = - -4p(p-2) 1 2/(p-1)p-21 (12 12)2
i2Ii=2 j=i+ I 2=i<j

12(-p2+3p--2) rPJ 1 J

2=i<j

Putting it all together, we get the density function for

12 9 "' I Pi

-- ~~~1 , -2 12 aI I
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in terms of 1? as

dF(v) 7 -r(nPp) [2 ' P 1-4(p-1) (12 - P)2
([detA2 ]nCFp(n)CFp(p) E 1 1 3

1-2(n-p)(p-1) 12(n-p)j 1(-p2+3p2) -1)2 (d_)

Collect the exponents of l2. We get

-np - 2(p - 1) - (n - p)(p - 1) - p2 + 3p - 2

= -np- 2p+ 2 - np + p2 + n - p - p 2 + 3p - 2

= -2np + n = n(1 - 2p)

Consolidating the l1 terms gives us

= 'P(P-1)F(np)l~nl- 2P) [ /•1 l

d(vI)= [det A21 CFr(n)CrF(p) 1] A?

[det A2J" CL,(n)CP_(p) [z A2 :L=.V' [ J

PP

We2more slight opportunity to economize on notation. (-p) =

(I~l_ • "-and n - 2np - n + p = p() - 2n). This gives us
I rp(P 1I)r (np) Ide D j 2( -p [s 'f ''[ (12 122 ( v

(= [det A 21' crP (n)CrP (p) [ 2,= .1) hf ] (lJ - 1)2J (dv)

When we select the null hypothesis Ht,1 e = iz for all ,which is the

saea 2 1 =t -. • we get

dF(v I - 2= ( 2 for all i)[e A21 i lncr~ I Iil I Ii~ I
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irP(p')F(np) Idet DI-P [tr D]n [!(12 _\](d)

[det A2]n crp(n)Crp(p) 12p(2 --')A2np (d3 )

,rP(P-')F(np) jdet DI-P [tr D]•P P" F 1= crp(n)crP(p) 12 (2,-1)~n 1(12 _ lj2)2 (dv)

The alternate hypothesis is Ai,1 A• <, A for all 2 <i < p.

We test all {Hi, } simultaneously against all alternatives {At,,}. We accept

or reject Hi,1 for 2 <_ i <_ p according to the comparison of the test statistic

12
t against the critical value Ci, which is appropriately chosen for the desired

significance level a such that

Pr{Ci,, < L < 1,2 < i < p I H} = (1 - a)

The total hypothesis H is accepted if each individual hypothesis Hi,1 is ac-

cepted. The power of the test is

1 - er{Ci, _< 1_, 2 <i <p I A}

where A = U Ai,,.
i=2

The joint density dF(v) is the appropriate function for computing the

required critical values {Ci,}. Notice that {(A?} must be assumed. 0

6.3.4 Joint Density of Ratio of Arbitrary Sample Eigen-

value to TrLce of Sample Covariance Matrix

Proposition 4 Let the sample eigenvalues D = diag(/2,... ,12) estimate the

population eigenvalues A2 = diag(A•,..., AP) and have the joint density func-
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tion given by

dF(D)= [ IdetA Dk 12 ] eJ2)2 (dD)

Then the joint density of T = (02,'-, Op), 0i =L- is given by

rP(P-1)F(np) _ 1 1 )]-p

dF(')= [det A2]1 Crp(n)CrP(p)e i=2 I I

X [(1 - 02 . .. Op)02 ... OP]n-p

x (1 - 02 - OjI - 20j - 03+1 . OP)2 11 - Oj)2 (dI)

This was motivated by the transformations suggested by Krishnaiah and Schu-

urmann [151].

Proof. The results and proof in [151] are for a complex Wishart matrix dis-
tributed as CWp(r�+--n+-P). Change variables from (l1,.. 1,2) to (V, . • ,p)

where v, i] land k =2for 2 < k <p.
t=1

VI 11...1

2 1 12

1 (2

or N = BL. The Jacobian is det B-' = 1.

To form the density function of N = (vI, vp) more easily, let us do

some bookkeeping first.

= ..... ( 1A2
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-- + Vi.

i==2

"I(1j -12)2= 12J(l - r) lI II (_lt- t)
i<j I i=2 j=i+1

12 2 VI• = Vl 2 V.. v-1 -- 2vj -- vj+l -..... vp,, for 2 < j <p

l1 - 12 = vi - vi, fori5 1

Substituting the new variables and including the Jacobian, we get

dF(N) = [detA 21l CFp(n)Crp(p) {=exp [1 (- I

X [ ,,, ,.2 ..• , ,, - ( ,V 2 + . .--+ ,,,,1 2 V 3 ... ,,,, n -p

X v v 2 -/ ..... /j-- - 2v -- +1 . p)2

II -I (V _V . (dN)

i= j=2 ~

The next step is again a change of variables. Let 01 = v, and let Ok = V

for 2 < k < p. Then Vk = VI0 k = wk(O). The Jacobian is found by

Ia. . . . .a 1 0 . . . 0
a9i 802  aep

S la--2 ... -8_ 0 W"2

det oo1  802 80P det = OP-1

ow. Ow . Ow, " 0 01

801 i92 8~p6

To make the work easier, we do some more bookkeeping.

exp(1-) =exp [I -101f 1 -

i=2 ( t 1i=2 1 1
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1

= - exp[-aO1]

where a 1/
Then

VIu2...up-(V'2 +"" + p)V2u3 ...- - e•0 02 ... Op-O(02 + + op)02...Op

= 0(1 - 0 2 -.. Op)0 2...Op

Ul -v-U2..... j--1--21/j-v j+ I...-. vp=-" i1[--02 .... Oj-1 -- 20j -Ojar ..... Op]

P--1 p p--1 p

1 11 (Vi,- Vj) = II 1 01o(o-o0)
i=2 j=i+l i=2 j=i+l

We have effectively isolated all terms of 01. Collect these terms with the powers

they are raised to in the density function. We get

oP(n-p) 02(p-1) l2"12 (P-1)(p-2)Op-I
1 l "11

where the last factor is the Jacobian of the transformation. Then

p(n-p)+2(p- 1)+(p- 1)(p-2)+(p-) = p(n-p)+(p- 1)(2+p-2+1)

= pn - p2 + p2 _ np - I

Collect all the terms to get the density function of E = (01,.-., OP).

C.p(p-n)

d[det (1" CL'(n)CL'(p) R1 - 02 ..... 2 )0... 0 ,I 2
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× np '61 •eoO(dO)
e

where

Our goal is achieved by integrating out 01 to get the marginal density of

T = (02,"-, Op). Using lemma 62, we see that

j0OP-le-cd0i = - o-nPr(np) =- ao-p [(np - 1)!]

Therefore, the density of T is given by

dF(TI) = rP(P-l)F(np) P0 ]n[det A2]- Crp(n)c-rP(p) o, 2

X [(1 - 0 2 . . . . p)0 2 . . .OP]n - p

rp-I P1x •(1 - 02 ... j_, - 20j-_j+j ... P)2 1[ri (Oi-O0)2 (dF)

I I =i+1 I

We want to know how to compute this in terms of our original variables

(12,.., l). We do some more bookkeeping.

P 0i P 12i P 2 • "

A? A i=2 tr D tD i=2

(1 02 .. .. 0 )02 ... Op = I_1 2 lP • 12 132 l
trD trD) trDtrD trD

12 1 TI'- 1 2'
(t• )(rD 1] .... 12v) t--r-D] (12...l12)= (t- ) l "12 .. 1

det D

[tr D]P

1 -02 ... O_1- 20j - Oj+l ... 0



214

-22 12__trD 2• 11_1 2J 3•+1 P
trD trD trD trD trD trD

1 _tD l 12I 2 21 2 21

12)] 1 [12 _ JJ]
1trD [trD-(l2+trD-•)] trD 1

t2 1
o, - _ 3 = 1 _ _ (12 - lJ)

trD trD trD

We collect the powers of (tr D) as a final bookkeeping task. To simplify, let

x = tr D. Then we have

np )np -pn )-2p 171 (12 - 2)2] 1-2(p- 2 )(p-I) -- P 1

Then

np- p(n - p) - 2(p - 1) - (p - 2 )(p - 1) np- p(n - p) - (p - 1)(2 + p - 2)

= np-p(n-p) - p(p- 1)=np- np+ p - p 2 +p p

This gives us

7rp(p 1')r(np) 2(1 1 Hn
dF('') = [det A2 ]J CrP(n)CFr(p)e i2 l, i=

x [tr Dip [det D]"- I.(l• - l2)2 (d*)

The idea to seek the joint density of

tr D' tr D

was motivated by Krishnaiah and Schuurmann's suggestion to perform the

change of variables ui = _ for, <i<p.
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Under the hypothesis
p

U H,,,: A? = A
i=2

we see that dF(T) =0. The alternative hypothesis is given by

Pnfi3 ,,: A? < A
i=2

0

Corollary 4 . Let the sample eigenvalues D = diag(l ,--.,l•) estimate the

population eigenvalues A2 = diag(Al,-. , AP) be nonsingular such that Al #

for k > 2. Let D have the joint density function given by

dF(D) -Idet DI(t n 1 exp [jlk2 [(I2 _2)2 (dD)
L[det A2]1 crp(n)crL(p)j Axk=,2], L<'

Let 01 = trD and Ok = 2for k>2. Let

a Z Ok

Let e = (01,.-., 0) and %F = (02,.'--,0). Then the conditional density of 0

given T is

dF(O I %P-1e-0 np = dF(T)
(np- 1)! 1

which is the density function for tr D.

Proof. From the proof of proposition 4, we have

=rP(P-1)I(np) [(1 - 02 ..... Op)02 0.,"I-"
dF(O) = [det A21n crp(n)crp(p)
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[p-I - O)2] ! np-e -ae1(dE))

i2 y=i+l

where

Then

dF(,1') =-[e 2nIpP-)0 p0 ~-

[de A2 ~C~nC~p(1 - 02- - - - O-1-2j-Oj p)9 2 O

[vx H(0, _ 9)2] 1!F(np)anp (dT~)
je

Therefore

dF(E) I ID dF(O) =_np 0 e-c dO1 -n- 1-"a ~~
dF(*I) - [(np)a-np (np - l)!O 1dO

Under the hypothesis Hij : A = Al , the term a is zero, and thus

dF(OI*)=O0

The alternative is A:ij )-A < A 2 for at least one i E [2, pl. C0
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Chapter 7

SUMMARY AND CONCLUSIONS

There are several conclusions from this research that need to be stated. Of im-

mediate interest are the technical results which apply to the spatial processor

order determination problem. The second kind of results from this research

are the mathematical and statistical tools which are needed by engineers and

physicists, but which are usually of little interest to traditional mathematicians

and statisticians.

7.1 Results Related Directly to Order Deter-

mination

The immediate objective of this research was to derive a test statistic and

its distribution for determining the number of significant sources observed by

an arbitrary array for a small number of samples using a hypothesis testing

approach. This is the problem of examining if eigenvalues of a covariance

matrix from a complex multivariate Gaussian distribution are significantly

different. This is the small sample complex principal components problem.

The form of the required test statistics has been known for a long time. The

challenge is to produce the distributions of the desired test statistics.
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The problem of finding efficiently computable cumulative distribution func-

tions for appropriate test statistics is still a problem I have not solved. In this

thesis, several distributions relevant to the small sample system order deter-

mination problem have been found. These are highlighted below.

An exact solution we know how to compute which makes inefficient use

of the data was constructed as an F-distributed statistic. This is theorem

6. It requires partitioning the data into two independent sets yielding two

independent complex Wishart matrices. Then

F - W,=c, •4c' ,' dncF(2n, 2m, 2c ', 1c, 2c2 b2e2 )
nc"1 W2C2C'JEiC1  CHEIC I' c2.F~rc2

The values assigned to El and E2 are those specified in the hypotheses of

the test. The form of the distribution becomes simplified when it = m. The

cumulative distribution function for the F(2n,2n) distribution was derived,

presenting a closed form result. This result is documented in theorem 71.

A closely related statistic is for testing hypotheses in MUSIC. This F-

statistic is developed in section 6.2.2. It is distributed according to the distri-

bution F(2n, 2n).

F = CHWYCI(CHVH:VC
2

CHWzC2C QI ( + ARAH)QC0

Although this may look like a major breakthrough, it really is not. Covariance

matrices E and R must be established as hypotheses for the test. Often the

noise covariance is taken to be E = a2l, and the vectors C1 and C2 of unit
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length. Further simplification occurs when the hypothesis is q = 1 and if A is

a vector of unit length.

The joint density function of the eigenvalues of one complex Wishart matrix

with respect to another complex Wishart matrix {det(A-AB) = 0} was found,

paralleling Anderson's result [261 known for the case of real varizbles. This is

th-nrem 7. Under the null hypothesis of sphericity, this isQa piece of the signal

subspace method which is based on examining the eigenstructure of the signal

covariance matrix. See section 5.1.

A complexification of another Anderson result provides the joint density

of ordered eigenvalues of an Hermitian matrix when the density of the Her-

mitian matrix is a function of only its eigenvalues. This is theorem 68. This

is a powerful result because it allows us to examine generalizations. I have

rederived a result of James [1201 and Khatri [137] through complexifying An-

derson's joint density of the eigenvalues of a matrix distributed as CyVp(n, I).

This is theorem 69. This distribution is fairly simple, and it corresponds to

the important case of a pre-whitened filter. James' result (theorem 70) for

the joint density of the eigenvalues from CWp(n, E) is also derived. I am not

aware of any derivation in the literature of this distribution done for the com-

plex case without reference to the derivation for the real variables case. James

[120] wrote his result down by inspection from the form of the real variables

case. Takemura [265] referred to his derivation for the real variables case. The
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complete derivation for the complex variables case was made possible by the

work of Gross and Richards [96].

The paper on zonal polynomials of one and two matrix arguments for the

combined cases of real, complex Hermitian, and quaternion variables by Gross

and Richards [96] is a major key to the pursuit of an expression for the density

function of a test statistic for the small sample order identification problem. In

particular, it is this proof which justifies the splitting theorem (proposition 41)

for zonal polynomials. It is this splitting property that frees us from the prison

of a specific coordinate system by allowing us to integrate over all rotations,

leaving us with functions of only sample and parameter eigenvalues.

It is the abstractness of the mathematics involved that allowed solution of

the problem. It was on this point that the validity of James' unproven result

[120] for the joint distribution of the eigenvalues of the sample covariance

matrix for the complex case hinged and had not been established by other

means. A contribution to the engineering community by this thesis is the

narrative parallel in appendix C provided to Gross and Richards' very good

paper. Their paper contains key ideas for understanding how to investigate

invariance problems. As a side benefit, it was discovered that their induction

method hinged on a group theoretic version of the LDU decomposition which

engineers are familiar with. See equations G.16 through G.25. I also provided

an alternate proof of their lemma 5.2 (given in this thesis as theorem 98)
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which relaxed one of their conditions. See the discussion for equations G.5

through G.11. This result opens the possibility of expression of the required

distribution using other sets of polynomials which might be easier to compute

or which might converge faster.

Following Muirhead's work [187] for the case of real variables, the joint

density of the random variables (u,.-.) has been derived (given in equation

6.16), where u is the statistic for testing sphericity and is given by u =det A

It was also shown that v = tr A and u are independent. See theorem 10. The

density of u for the case of p = 2 is given in equation 6.17. The cumulative

distribution function for p = 2 is given in equation 6.18. The density of u

for the case of p = 3 was determined to be computable. Its detail makes it a

suitable evaluation problem for a symbolic mathematics processor.

The density function for the ratio of averages of disjoint sums of sequential

sample eigenvalues of a complex Wishart matrix

T14 = (p- b + I-1, a..+ •
a(12 + . . .1J2v)

was examined in section 6.2.1. The density function given as corollary 3 was

determined in terms of a partitioning of S = (CHUHEUC)-1 where E is

evaluated as specified by the hypothesis. The matrix C defining the linear

combinaions to be compared is constructed as shown in the example by equa-

tion 6.14. Similarly, an expression for the cumulative distribution function is

determined, which is given as theorem 9.
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A number of results motivated by (but not paralleling) Krishnaiah's works

[144] [145] [151] were produced in section 6.3 for the case of

D = diag(l..... ,12) -, CWp(n, A2)

The results are various ways of using the sample eigenvalues to test if all

the population eigenvalues are equal. The tests differ in the details of the

specification of the alternative hypothesis. The first method presented (section

6.3.1) examines the joint density of the ratio of adjacent sample eigenvalues.

The second method (section 6.3.2) examines the joint density of the ratio of

the sample eigenvalues to the smallest sample eigenvalue. A third method

(section 6.3.3) is similar in spirit; it looks at the joint density of the ratio

of the sample eigenvalues to the largest sample eigenvalue. A last method

(section 6.3.4) examines the ratio of sample eigenvalues to the trace of the

matrix. Even with this simplified distribution for D, the marginal densities of

individual test statistics are difficult to evaluate in general. The densities for

the null hypothesis of equal population eigenvalues has been provided. The

testing problem is viewed through the mechanism of Roy's union-intersection

principle.

Another contribution is the discussion of the details of the generalized max-

imum likelihood estimator of Kiefer and Wolfowitz [140] (section 4.2) which

are generally unknown in the engineering community. Engineers familiar with

their work in stochastic approximation [2911 will find the discussion of gener-
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alized maximum likelihood estimators to be closely related concepts via the

mechanism of convergence of sequences. The generalized maximum likelihood

estimator involves an application of the Radon-Nikodym derivative which is

usually studied in a first course in real and complex analysis. Their powerful

concept was written as a side comment in an article devoted to the study of

statistical consistency. This thesis provides an exposition of their concept as

a generalization of the classical hypothesis testing approach and to the esti-

mation approaches others have taken. It also is a fairly nice discussion on the

philosophy of what is going on when an estimation problem is done. It is a

conceptual springboard to much more powerful generalizations.

7.2 Complex Statistics Tools for Engineers

and Physicists

Some results which are necessary to support the research of this thesis have

broader application. These results are collected in a systematic development

of the statistics of complex random variables. I could not have efficiently

developed a comprehensive theory of the statistics of complex variables without

the very good works by Arnold [31], Muirhead [187], and others in the real

variables case. This is a natural evolution of ideas. At the same time, it

is cautioned that the extension of real variables results to the complex case



224

requires some care. In particular, the complex multiplication operator imposes

a structure on the algebra that goes beyond treating C" as merely R2n. This

shows up most clearly when dealing with changes of variables and derivatives.

It can, however, also be seen just from examining the algebraic theory involved.

These differences have been demonstrated.

The tremendo:'s similarity of results between the real and complex cases

has occasionally led some extremely talented people to write incorrect results

down by inspection. Very few people have worked on the statistics of com-

plex variables and the reported results of several respected workers are not in

agreement. The study of multivariate statistics of complex variables is still

young enough that all results should be reexamined for correctness when their

use is anticipated. That caution applies explicitly to this thesis as well as

to the literature in general. This issue is important to this thesis because

I needed specific results. In particular, I needed the density function of the

complex Wishart distribution. A contribution of this thesis is the rederivation

of this distribution, following two methods used by others (sections E.1.2 and

E.1.3), and a third by mathematical induction (section E.1.1) which Arnold

[31] applied in the real variables case. The agreement of the results from three

different approaches builds confidence that the result is correct. I am pleased

to report that Goodman [92] correctly reported the density function (with

derivation) for the complex Wishart distribution.
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I do not know of any similar systematic development of the distributions

and properties of the complex matrix normal distribution (section D.2) and

the complex Wishart distribution (section D.3). Among the properties exam-

ined in this thesis are the response under linear transformation of variables,

conditional distributions, and conditions for independence. I have provided a

derivation for the matrix complex normal distribution. The density function

for this distribution has been previously reported in the literature without

derivation by two well known researchers, and their results were not the same.

I am pleased to report that Brillinger [45] correctly reported the complex

matrix normal distribution. I have complexified Arnold's results [31] for the

distribution of the trace of a linear transformation of a matrix complex nor-

mal random variable and the distribution of twice the trace of the argument

of the exponential in the density function of the matrix complex normal dis-

tribution. The distribution of 2 tr('-1 W) is found to be a chi-square variable.

Special functionals of the complex Wishart distribution were shown to have

a chi-square distribution, and with this observation an F-distributed statistic

was constructed from two such independent functionals. A complex version of

Hotelling's T2 statistic was also derived (section D.4).

Another contribution is the development of the properties of a charac-

teristic function in the context of complex variables (section B.4). This was

motivated by the definition of the characteristic function of a complex variable
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given by C. R. Rao [217]. Included in this is the development of expected val-

ues of moments for the complex case. An important part of this contribution

is the demonstration that the expected value of moments are not found by

applying a derivdtive. Rather, they are found by the complex conjugate of the

derivative with respect to the transform variable evaluated at zero. Important

cases are worked out. Variations on A det(A +cBT) are computed. These are

important because of the application to finding the expected value of moments

of something related to the complex Wishart distribution. For the complex

Wishart distribution, the characteristic function used is of 2W - A(W) where

A(W) is the matrix of elements on the diagonal of W. This fact is used to

demonstrate the power of using the characteristic function as a generating func-

tion for moments. Various other results are given, including the distribution

of det(E-1 W), W- 1, W, + W2, and (AW-lAH)-1 and some useful expected

values such as the expected values of [det(W)]k, det(W-1), W, W-1 , tr(W),

(tr W) 2, and var(tr(W)). I am in debt to various results (section F.4) by Tague

[264] which demonstrate the usefulness of the theory presented. This includes

the expected values of (W2W-'W 2), (W-1 AW-1 ), W- 2 , and tr(W-2 ), and

var[tr(W-1)]. The work by Tague concludes with an example of computing

the signal-to-noise ratio at the output of a beamformer (section F.5).
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7.3 Other Results

There are a number of ideas developed which are not central to the main

research theme, but which had to be developed in order to obtain the tools

needed for the main theme research. Some of those which do not fit neatly

into the above categories are identified here.

Of greatest practical importance to engineers and physicists are the results

concerning the complex case for scalar derivatives of vectors and matrices,

vector derivatives, and matrix derivatives (Appendix B). This is based on the

observations made regarding the existence of complex derivatives with appli-

cation of the Cauchy-Riemann conditions. The caution is that many results

reported in the literature incorrectly engage in maximization of Hermitian

forms by attempting a derivative approach. Final results are often valid be-

cause the same result can often be obtained by a completion of squares or

projection approach to the problem. However, not all such extrema results

are fortunate enough to be valid. Attempting to avoid the derivative existence

issue by treating the real and imaginary parts as separate variables is invalid.

Other contributions of importance to engineers and physicists are the re-

lated results concerning change of variables for the complex multivariate case

(Appendix C). Several important observations are in order. The first and most

important observation is that there is no such thing as "the general case". A

matrix without discernible structure is not a general case. You cannot apply
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the change of variables for an unstructured matrix to a structured matrix and

usually get the right result. Any structure that exists in a matrix must be

accounted for in a change of variables. Otherwise, your results are simply

wrong.

For nonlinear change of variables I copied Muirhead's approach [187] of

using the exterior (wedge) product to simplify the algebra. Mathematicians

discover this operator in the study of differential geometry. The wedge product

is a tool commonly used by physicists and nuclear engineers, but rarely used

by most other engineers. With this very practical application to change of

variables for the complex case, this tool should become part of the working set

of knowledge of all engineers involved in acoustic signal processing. This was a

necessary tool for computing the Jacobian for the change of variables involving

matrix quadratics, for example the form Y = TTH. Most of these results are

complexifications of results by Muirhead [187], Arnold [31], and Deemer and

Olkin [67]. Some of these confirm results by Goodman [92], or confirm results

or make corrections of editorial problems in Khatri [137]. The development

of the Jacobians was a necessary part of the derivation of the various density

functions in this thesis.

I have provided many decompositions of complex matrices and related re-

sults (appendix M) based on complexifying results done for the real case by

others. These include special results for complex triangular matrices, eigen-
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value decompositions with related results, proof of the relationship between

the eigenvalues, determinants, and the trace of a matrix, square-root decom-

positions, polar decompositions, Cholesky decomposition, singular value de-

composition, and various relationships between eigenvalues of X, (aI + bX),

and (aI + bX)-'. Many of these results can be found in Stewart [259].

The various constructions of a complex vector space (appendix J) drive

home the fact that Cn is not merely R2n, although I have seen the construction

of a vector in R2n by others, and have seen the scalar ( y by others.

This work was motivated by examples from Nomizu [193].

A few integrals were computed (appendix P), some of which do not appear

in Gradshteyn and Ryzhik [94]. These were done in support of evaluation of a

cumulative distribution function. Evaluation of f xk e-cx dX was tedious

(theorem 147), but is one most sophomores can do. Generalized even and

generalized odd functions were defined (definitions 84 and 85) and their ele-

mentary properties demonstrated (section P.2.6). The integral f um(1 - u)adu

was computed and interpreted as an expansion in terms of the probability of

k failures in m trials when 0 < u < 1 (propositionl03). The complexification

of Muirhead's matrix Laplace transform [187] of (det A)a-m with respect to

S= EH where A = AH is developed as theorem 150. This is the integral

IA> etr(-X-'iA)(det A)a--m(dA) = (det E)aC•r.(a)

>0m m n• fm il



230

This provides an alternative interpretation of the complex Wishart density as

the entire integrand in the normalized transform. This is merely the complex-

ification of a relationship known by specialists working in the real variables

case, yet it is an important one.

Other miscellaneous contributions include the generalized definition of the

nested operator (definition 87) and development of the trigonometry of com-

plex matrices (appendix N). The definition of the nested operator A (aknbk)
k=1

is a generalization of Tuma's nested operator (section 8.11) [268] which has

application in one of the test distribution density functions (proposition 1),

and has application in recursive solutions of problems. I used the definition

of eA to complexify results by Curtis [64], which includes work regarding the

matrix logarithm (section N.1).

I generalized the discussion by James [120] to show that his set of three si-

multaneous mappings can be formalized into the setting of a topological group

theory (section H.6). I defined a group G whose elements are pairs of matrices

with a special operator (section H.6.1). I then defined a set A upon which

this group acts, where A happens to be the set of all complex multivariate

normal distributions (section H.6.3). It is this generalization that justifies the

application of the machinery of group representation theory. It makes explicit

that we really are operating on distributions and not just parameters of a

distribution.
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7.4 Linear Algebra Results Verified for the

Complex Case

Some results for complex variables are true merely because the space under

consideration is a linear space for any arbitrary field. I verified all results I had

a need for, not knowing ahead of time whether the result depended only on the

linear algebra for an arbitrary field, or whether there was some modification

needed to specialize the results to the complex case. The following results do

not differ between the real and the complex cases:

1. Partitioned matrix right and left inverses (section K.3.1).

2. Partitioned matrix determinants (section K.4.2).

3. Eaton's lemma 1.35 [73): det(In + AB) = det(Im + BA) with variations

(lemma K.4.3).

7.5 Other Simple Results

The results identified here are results which are mundane. I have not bothered

to see if anyone else has produced them. They are useful, but not challenging.

1. Properties of skew-Hermitian matrix A = -AH (definition 77).

2. Proof that if A is positive definite then A is Hermitian (proposition 48).
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3. Many explicit expansions of the trace of a product of various matrices

(section K.2). These were developed to support evaluation of functions of

the complex Wishart distribution via the method of differential functions

of the related characteristic function.

4. Complex matrix inversion lemmas (Section K.3.2).

5. Expression of the (p,p) element of an inverse matrix in terms of the

elements of the original p x p matrix (lemma 41).

6. Proofs that [det(A)]- 1 = det(A-') (proposition 57) det(A*) -- (det A)*

(lemma 42), and det(AH) = (det A)* = (det A)" (proposition 58).

7. Proof that for unitary A that det A = e" for arbitrary 0 E R (lemma

43).

8. Proof that for orthonormal complex matrix A that det A = ±1 (lemma

44).

9. From proposition 61:

1A.det = det(A - B)

B I

10. From proposition 62:

det = det(A - B)

II
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11. From proposition 63:

det = (det A)(det B)
0 B

12. From lemma 49:

[AoI CoIp Ai A
det =det ®lp det

B®Ip D®Ip B D B D

13. From proposition 65:

det(I + A 2) = Idet(I + iA)12

7.6 Proofs for Results Stated by Others

1. Littlewood p. 19 [1671. If A = -AH then (I + A)(I - A)- 1 is unitary

(proposition 59).

2. Littlewood p. 19 [1671. If B is unitary and -1 is not a characteristic

root of B, then there exists A = -AH such that B = (I + A)(I - A)-'

(proposition 60).

7.7 More Results

1. Two examples of structures involving Hermitian matrices failing to form

a group (section H.5).
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2. Proof that A(adj A) = det(A)I,, for the complex case (proposition 56).

The point is that even for the complex case

adj(A) = [(-1)'+j det(X3 3 )IT

rather than

[(-1)i .+3 det(Xij)]H

where Xij is the minor of a;j for matrix A. This is a good example that

intuition and experience cannot be trusted to guide the conversion of

methods from real to complex variables.

3. Demonstration that the orthonormal bases produced by the Gram-Schmidt

orthonormalization process (appendix L) are not unique, but depend

upon the bilinear operator used in the algorithm, and that this bilinear

operator is not required to be an inner product. This demonstrates that

the property of having an orthonormal basis for a vector space does not

imply that the space is an inner product space.

7.8 Comparisons.

The theory I have pursued is not yet fully developed. For selecting methods

for use in systems being designed today (1994), use a different approach.

When constrained to serial processors, the estimation approach conceptu-

ally should yield quicker results than my sequential testing approach. However,
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it should be observed that other estimation approaches often are sequential

also. It is common to require the construction of a family of estimates and

to pick out the "best" estimator from that family. As technology provides us

with economical and practical parallel processors, this source of difference of

approaches will become less important.

The more knowledge you have, the better decision you can make and

the better assessment of the decision quality. The information theoretic ap-

proaches used now do not require establishment of measures of effectiveness

for the quality of the produced estimate, although conceptually it can be done

via providing confidence intervals. The hypothesis testing approach requires

explicit identification of allowable error.

Is one method better than the other? It depends on your purpose. For

applications, it also depends on available technology.
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Chapter 8

FURTHER RESEARCH

Suggestions for further work identified in this section are of two types. The

first type is covered in the section titled Extending This Research. That focus

is on work needed to continue progress on the topic of the small sample order

identification problem. The second type of recommendations focus on the

development of ideas and tools less directly related to those used in this thesis.

I think identification of these less directly applicable ideas is vitally important

for the broader advancement of engineering and science.

The small sample order identification problem subtends several areas that

desperately need more work. The small sample statistics of complex matrix

random variables is still an area that has received little attention compared

to the real variables case. The basic question of what are the appropriate

properties of a small sample test statistic need to be examined.

Mathematical tools for constructing the needed distributions need to be col-

lected, cataloged, and more extensively developed. This includes the system-

atic collection or development of complex matrix algebra and calculus beyond

what was done in this thesis. Much of this work already exists in abstraction

or is scattered throughout the literature. Carefulness in reading the literature

is strongly recommended. Results identified as applying to the complex case

may assume complex symmetric matrices rather than complex Hermitian ma-
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trices. This is particularly true in literature dealing with group theory or zonal

polynomials. Conditions for existence of complex derivatives are often ignored,

resulting in errors in the literature, particularly in the area of adaptive beam-

forming. It is not uncommon to see the erroneous application in the complex

case of gradients used in optimization and search algorithms. Treating the real

and imaginary parts of complex variables separately in a gradient is invalid

as a method of avoiding the existence of the complex derivative upon which

the optimization methods depend. Jacobians for complex change of variables

reported in the literature are not reliable. Similarly, distributional results are

not yet reliably reported. Caveat emptor. Progress in related areas in the last

few years further increases the urgency for completing a theory of complex

multivariate analysis of stochastic variables. This effort will be of great ben-

efit to people studying acoustics, signal processing, and other areas as well.

It needs to be made accessible to the level of the engineering undergraduate

senior. Specific areas of mathematical knowledge must be further developed.

In particular, progress in extending our knowledge of zonal polynomials of

several complex matrices is urgently needed. There is plenty of work yet to be

done.
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8.1 Extending This Research

This thesis has provided the tools for development of application theory, but is

not mature enough yet for easy experimental or simulation use because of the

difficulty of evaluating cumulative probability distribution functions. Research

is still in the embryonic stage. The continuing work by Gross and Richards

in theory and the continued use in applications by Tague are providing the

theory, interest, and pressure that will eventually produce practical results.

8.1.1 Some References to Consider

There are a number of references that would be worthwhile to thoughtfully

consider with respect to the problems of statistics related to the order esti-

mation problem. Saw's 1977 paper [233] proposed a method of computing

zonal polynomials which motivated further work on the problem which once

was thought to be intractable. Farrell [80] reported on the calculation of

complex zonal polynomials in 1980, which includes some tables. Understand-

ing his paper requires understanding group characters, bisymmetric matrices,

Young's diagrams and Haar measure. Saw's 1984 paper [234] establishes the

connection between the ultraspherical polynomials and distributions on the

m-sphere. Kushner and Meisner [159] reported in 1984 on integral and dif-

ferential formulas for zonal polynomials. Watson's 1986 paper [277] discusses

estimation theory on the sphere in a Bayesian setting. Yu's 1991 paper [2951

. ... ........ ...... . . . - - , m m m mm mi
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on recursive updating of the eigenvalue decomposition of a covariance matrix

may represent a significant contribution. It would be of interest to determine

how this affects the rank determination problem and the question of indepen-

dent samples now assumed in forming the test statistic. Shenoy's 1991 Ph.D.

thesis [240] on group representations and optimal recovery in signal modeling

deals with concepts that have repeatedly surfaced in the background reading

required to understand the work of Gross and Richards [96], thus indicating

that it deserves careful attention.

8.1.2 Connecting Gross and Richards' Work to Stein

and Weiss' Work

The bridge between abstract theory and engineering application will be nar-

rowed when the connection between the work by Stein and Weiss [258] and

Gross and Richards [96] are related in terms understandable to a well trained

engineer. This is the most urgent and productive next step. Krantz' presen-

tation of Stein and Weiss included some wonderful geometric interpretations

of spherical harmonics and zonal polynomials. Stein and Weiss did their work

for the case of real variables which stopped short of the splitting theorem used

by James [120]. The work by Gross and Richards was done in a more general

setting, yet it did not include generalizations of some key insights developed

by Stein and Weiss. Making these connections must be done by someone that
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understands both the traditional development of special functions and also

the background material supporting Gross and Richards. It would be nice

to complexify Stein and Weiss, and include the splitting theorem and other

developments. The abstraction of Stein and Weiss' axis of spherical rotation

needs to be determined in the Gross and Richards' framework.

The splitting theorem needs to be examined to determine if it truly estab-

lishes an equality (i.e., '= and =* both hold in the derivation) or whether the

correct statement of the theorem is only =>. The practical consequence is that

we know from Gross and Richards work [96] that a complex zonal polynomial

of Hermitian matrix argument Zm(W) has the same value as when the argu-

ment is the matrix of the eigenvalues of W. When this is connected with the

splitting theorem, and if it is bidirectional, then via definitions of generalized

hypergeometric functions of one and two matrix arguments we determine that

exp(E- 1 W) = exp(A- 2 L2) where A2 is the diagonal matrix of eigenvalues of E,

and L2 is the diagonal matrix of eigenvalues of W. I have generated a numerical

counterexample to this.

Although Gross and Richards [96] defined a differential operator (p. 788,

Section 2.2) as part of the development of zonal polynomials, it appears to

not have been necessary to achieve the results they were after. In particular,

their equation 2.2.8 is not required for proving their equation 2.2.5. If you

define a polynomial as a vector in the way done by Broida and Williamson
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[471, then the inner product between two polynomials defined by Gross and

Richards which used the differential operator can be replaced by the usual

vector inner product on the vector form of two polynomials. The application

of differentiation used later to establish a set of coefficients to guarantee series

convergence provides a nice but not necessary motivation. This is good in the

sense that the ever present troubling issue of differentiability for the complex

case can be avoided. However, it appears that proof of differentiability is a

desirable achievement. That is part of the link back to the work by Stein and

Weiss. I still have not yet determined if the set of functions I derived forms

a complete set. Alternately, I have not yet determined the set for which the

derived set of functions is complete.

It would be useful to examine the family of generalized functions resulting

from the relaxed definition of the inner product. It is known that Fourier

expansions converge more slowly than other expansions. It would be interest-

ing to see if a careful choice of inner product could produce an oblique set of

functions that converge faster or are easier to compute than zonal polynomials.

8.1.3 Computation of Zonal Polynomials

Takemura [265J remarked about the relationship between real and complex

zonal polynomials. This linkage needs to be translated into the language of

engineering. This link has already been made by other researchers. Separate
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papers have been published on the computation of complex zonal polynomials.

It is said that computing complex zonal polynomials is easier than for real zonal

polynomials. I think the relationship can be obtained from a careful reading

of Gross and Richards with that goal in mind. Care still needs to be exercised

to determine if the "easy" computations apply to symmetric complex Wishart

matrices or to Hermitian Wishart matrices.

Similarly, the works of Constantine need to be folded into this study. See

references [56][57][58][59]. Constantine relied on zonal polynomials defined as

arguments of positive definite complex symmetric (not Hermitian) matrices.

We know that symmetry and Hermitian symmetry endow a matrix with differ-

ent properties. Constantine remarks [57] (p.1272) that since zonal polynomials

are polynomials in the characteristic roots, then the definition of zonal polyno-

mials can be extended to arbitrary complex symmetric matrices. Consistently,

he defines hypergeometric functions of a complex symmetric matrix variable

in terms of zonal polynomials of complex symmetric matrix argument. Since

Constantine [57] and James make use of the works of Herz [106], it makes sense

to reexamine Herz' work more closely to determine the restrictions Herz uses.

For example, Herz studies m x m complex symmetric matrices with a positive

definite real part. Does it naturally follow that the same zonal polynomial is

defined for Hermitian symmetric matrices? I can produce an Hermitian matrix

and a different complex symmetric matrix which have the same set of eigen-
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values. The work by Gross and Richards [96] shows that zonal polynomials

are definable for Hermitian matrices, but are these the same as those treated

by James and Constantine?

The importance of the question is because Constantine's work is the basis

for the evaluation of zonal polynomials in a few specialized and very important

cases, such as the noncentral real Wishart matrix. It may be that the basic

properties carry over, but with different constants. This raises the issue of

having to pay close attention to any derivative works based on James or Con-

stantine when working with Hermitian matrices, to ensure that cited results

of previous workers apply. It might not be enough to merely say that a result

applies to complex matrices. It would be logical to define a complex Wishart

distribution that applies to a complex symmetric matrix. I have not seen this

issue made a point of. Noting how important matrix structure has been in

modifying results from the real to the complex Htermitian case, the question

needs to be asked. The goal is to validate or achieve similar results consistent

with the work by Gross and Richards.

As an aside, another consideration is that zonal polynomials are symmet-

ric functions of its arguments. A function f(x, y) is called "symmetric" if it is

invariant under permutation of its arguments. This means if you change the

order of the arguments then the value of the function does not change. The

trace and the determinant of a matrix are symmetric functions of the eigenval-
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ues of a matrix. Thus, a zonal polynomial as developed by Gross and Richards

[96] is a symmetric function of its Hermitian matrix argument. The value of

the zonal polynomial depends only on the value of the unordered eigenvalues

of its Hermitian matrix argument. What may be happening is that authors

are unintentionally injecting ambiguity into the research by not differentiating

between symmetry of the function and symmetry of the function's argument.

When interest was restricted to real symmetric matrices there was no need

to be careful to distinguish between the two because the answer was "yes"

in both cases. When working with fields having more structure, more care is

needed.

The comments of the preceding paragraphs are not criticisms of the work

of the mentioned authors. Rather, the comments point out that the work they

did is related to the present application, and because terminology is so similar

the unwarned researcher may inadvertently apply results directly without first

answering the question if the same set of assumptions are used.

8.1.4 Calculus of Zonal Polynomials

An immediate next step that will lead to useful results hinges on the ability

to perform integration on zonal polynomials. This integration is necessary

to evaluate marginal distributions of test statistics. The work in this thesis

leads up to the point where changes of variables can be used to construct test
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statistics much in the same way Krishnaiah has done for the real variables

cases. Krishnaiah has stated the results for several integrals.

8.1.5 Distributional Theory and Tools

There is still much work to be done to support the development of statistics

of complex variables for application to problems of engineering and physics.

Critical to this process are two areas. The first is the development and system-

atization of Jacobians for changes of variables. A starting point is Roy's work

of 1952 [228]. Distributional work relies very heavily on being able to perform

well-selected changes of variables. There are plenty of results that have been

done for the case of real variables that need to be adapted to the world of

complex variables. Distributional work needs to begin with the Gaussian case,

but must grow beyond it. Work such as Olkin and Roy's 1954 paper [198] is

applicable and needs to be extended to the case of complex variables. For the

physicist, this work needs to be done for quaternions as well as for complex

variables. The second area that needs work is the study of invariance at an

abstract level. This work has been partially addressed with the attention given

to Gross and Richards.
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8.1.6 Noncentral Distributions and Power Functions

Once we have the results for the central complex Wishart distribution based

tests worked out, we must turn attention to the development of the noncentral

complex Wishart distribution and the noncentral distribution of related test

statistics. From these, we need to work out the power functions for the various

tests. As we saw for the case of the central complex Wishart distribution,

we cannot yet take for granted that previously published results are valid.

Those results, where they exist, should be reexamined carefully, developing

the related necessary tools.

8.2 Bridging Theory and Application

8.2.1 Important Authors to Consult

Krishnaiah is the author most prolific in examining specific tests based on

eigenvalues of a real or complex Wishart matrix. Some effort may be worth-

while to understand the report by Krishnaiah and Shuurmann [151]. It appears

that they have performed evaluations for special cases for which expressions

might be available for zonal polynomials.

The works of C. R. Rao deserve much greater attention. There is a need
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to examine his work thoroughly and apply it to this problem (as well as to

other problems). One important work I rediscovered after the research phase

of this thesis was finished is reference [214]. This includes work on matrix

approximations specifically applied to complex matrices.

Another author deserving of attention is Steen Andersson. See references

[27] [28] [29]. The first paper considers distributions of maximal invariants

using quotient measures. This work should be studied in the context of Gross

and Richards [96]. The second paper considers testing various real matrices

to determine if they have complex or quaternion structures. The joint density

of the eigenvalues are derived up to an unspecified norming constant, and

the exact values of all norming constants are derived simultaneously using a

method involving recursion formulae, The moments of the likelihood ratio

statistics used in testing are obtained from these norming constants.

Likewise, anything written by Muirhead should receive attention. Muir-

head's work is particularly useful in developing the machinery to obtain non-

central distributions. These are required for determining the power of tests. It

is his application of areas of mathematics that are nontraditional for statistical

(and engineering) work that enables his computation of some otherwise very

difficult noncentral distributions.

An idea from Kshirsagar [154] is to look at the distribution of moments

of the test statistic. This concept has not been attempted in this thesis, yet
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it deserves consideration by future workers. In particular, he applies this

concept to sphericity tests. Recall that one method for completely defining a

distribution is to know all of the moments of the distribution. Kshirsagar is

a recognized authority in multivariate analysis, and in principal components

and test distribution theory in particular.

8.2.2 Small Sample Test Theory

The fundamental question of what constitutes a good estimator for small sam-

ple statistics deserves some study. The attention and controversy regarding

consistency properties with respect to some information theoretic based meth-

ods (particularly AIC) implies that this question has yet to be authoritatively

answered. For example, we know that consistency, as technically defined in

statistics, is not a required nor necessarily desirable property [55]. However,

lack of consistency has been referred to in the engineering literature [129] as

a disqualifying property. That is appropriate for the large sample case, but

not, in itself, appropriate for the small sample case. Refer to section 4.3.1 for

a detailed discussion of this issue.

There are other questions as well. Will a biased minimum variance esti-

mate do? Should you apply asymmetric confidence bounds based on some

utility curve derived cost function? Must the test statistic for comparing es-

timators be invariant with respect to coordinate transformations? These and
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other questions need to be collected and systematically examined. The idea of

looking at parameter estimators for a distribution in terms of bias, etc., is not

new and should be incorporated into the thinking about the order estimation

problem. Bickel and Doksum [401 discuss this at length, and it is one of the

finest texts on mathematical statistics that does not require the reader to have

a background in measure theory.

8.2.3 Approximation Theory

The approximation techniques as discussed in Keener's well written text [131]

need to be applied to the problem to obtain practical (easily computable)

results once we understand what the correct exact forms are. Doing this does

not require a radically nontraditional mathematical background for engineers

once the basic form for zonal polynomials is understood.

8.2.4 Burnside's Theorem and Characteristic Functions

Newman's presentation [192] (p.166) of Burnside's theorem on irreducible sets

of matrices raises an interesting question. The question is related to the subject

content of this thesis in that the notion of eigenvalues is intimately wrapped

in the theory of invariance and irreducibility. Burnside's theorem is stated as

follows.
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Theorem 11 Let F be algebraically closed. Let G = {A} be a subgroup of

GL(n,F) which is irreducible as a set of matrices. Then any relationship

E Tpqapq = 0 for 7 E F can hold for all A = (apq) of G if and only if Tpq = 0
Pq

with Tpq = 0 for all p, q.

If you now consider i Re{f 7",,ap.} as the argument of the exponential
p,q

function and take its expectation, you have a characteristic function. When

you generate moments using a characteristic function, you evaluate at T = 0.

So, the question is "What does Burnside's theorem say about characteristic

functions?" Since characteristic functions present a sometimes easier way of

achieving distributional results we need in the order estimation problem, an-

swering this question for the complex case will give us insights to an important

tool.

8.2.5 Sturm Separation Theorem and Parallel Process-

ing

Another tool that deserves inquiry is the application of the Sturm Separation

Theorem as found in C. R. Rao (p. 64, section lf.2.13(vi))[213]. The advent of

parallel processing makes use of this theorem to compute eigenvalues practical.

The idea is that the eigenvalues of a principal minor of a matrix provide

estimation limits for beginning a search for eigenvalues of the next size larger

principal minor. Let Ak be the k" principal minor of the square matrix A
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formed by the upper left corner k rows and k columns. Let Aý(Ak) be the j3h

eigenvalue of Ak. Number the eigenvalues so that A' > A2 > .. > A. Then

the relationship between the eigenvalues is illustrated by the following lattice

shown in figure 8.1.

LARB e o% (A)SAL

2 
2 ,

Figure 8.1. Sturm's Eigen"alue Lattice

Thus, eigenvalues on the same row of the lattice can be searched for in-

dependently on separate processors using search limits computed from the

previous row of the lattice. Notice that the larger a matrix becomes, the more

extreme the eigeuvalues become. This al)p)roach might be goo(l when accuracy

is more importan t than speed. Note t hat at each row. y1ou restart wit the raw

data. You do not lose precisioti miierelv becatisse of accunmulating finite word

length errors from comnputations donie with previous rows. At each step. we

cani still usii the bls. of all the old teWChnIiqu(jes. including the iterative o(ies.
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8.2.6 Empirical Characteristic Functions

Epps discussed characteristic functions from a geometric point of view in a

1993 tutorial [78]. In this paper, he proposed the use of empirical charac-

teristic functions as a basic for hypothesis tests. Epps points out that such

an approach makes handling of procedures for estimation of parameters of

mixture distributions easier, which applies to the case of sonar.

8.3 Acoustics and Signal Processing

8.3.1 Processor Structure

As success is achieved in developing the necessary mathematical tools, some

thought will need to be given to the implementation. Those tests based on a

likelihood ratio test can be realized with an estimator-correlator (or estimator-

subtractor) structure. This is the case for the sample eigenvalue ratios. The F-

tests, however, were not derived from a likelihood ratio. Examining these tests

and devising the relevant structures of associated processors is still needed.

8.3.2 Time Variation of Noise Field

There are two fundamental approaches supported by this thesis, yet further

research results in the area of acoustic oceanography are needed to help make

the decision regarding which approach is appropriate at the moment. In one
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approach you only consider the sample covariance of signal plus noise, S + .N.

In the other approach, you obtain an independent estimate k" of the noise

and then look at (S + N) - N*. If your estimate of the noise covariance is

good, you want to choose the second method. If your estimate of the noise

covariance is bad, then you want to choose the first method. The trade-off

point is a fundamental statistical question that needs to be answered.

Then you need to consider the acoustic oceanography aspects. Over what

period of time is an estimate likely to be good enough to use? How do you best

propagate noise estimates in time? The Kalman filter approach is one way.

Use data such as sea state, precipitation rate, and noise in frequency bands

different than the band of interest as concomitant variables. Also, geography,

array geometry, and array platform orientation can be included in the sample

noise covariance matrix prediction method. The paper by Scharf and Lytle

[235] is related to these questions. So also is the paper by Scharf and Tufts

[236].

8.3.3 Patterned Arrays

Patterned arrays impose a structure on the covariance matrix of data passing

through the beamformer. This additional structure modifies the Jacobians for

changes of variables applied in the derivation of probability distributions that

ultimately show up in the sampling distribution of covariance matrix eigenval-
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ues. The approach taken in this thesis is an important first step, but it is not

sufficient for cases of special importance such as the line array with equally

spaced elements. Idealized line arrays have been extensively studied, and the

covariance matrix often modeled as a Toeplitz matrix. Random distortions in

a towed line array invalidate assumptions that make an idealized line array

efficient and simple to work with.

The inclusion of considering the matrix complex normal distribution begs

the question of how this can be applied to rectangular receiving arrays. It has

nicely built-in parameter matrices that can be thought of as a row covariance

matrix and a column covariance matrix.

8.3.4 Multipath Detection

This work is related to the problem of detection in a multipath environment.

To increase the probability of detection, you would like to consider several

paths simultaneously rather than treating each path independently. Mirkin's

thesis [1831 on use of stochastic maximum likelihood estimators considers not

only several paths simultaneously, but also the whole acoustic field. To formu-

late the problem, he requires that the number of sources be known. Techniques

in this thesis form a piece of the problem of estimating the number of sources,

but is not sufficient by itself to solve the whole problem.

The general unstructured array described at the beginning of this thesis
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is a three dimensional array. Thus any discussion relating to determining the

number or direction of signal arrival paths applies, regardless of the direction

from which the signal arrives.

The clustering of arrival paths and signals into sources is another prob-

lem with another set of competing theories for attacking it, yet the statistical

concepts of this research are a piece of that larger problem. Other related

theories include cluster analysis, discriminant analysis, factor analysis, proba-

bilistic neural networks, expert systems theory, etc.

Another way of viewing the problem, addressed by Buckley [48], is to

look backwards at the problem. He does so for a general array and applies

a Karhunen-Lo&ve decomposition in his treatment of the problem. He uses a

norm to determine if he has reconstructed his signal "well enough" as a way of

selecting the number of significant singular values. It would be good to revisit

his work with the view of making a determination from a statistical point of

view.

8.3.5 Analogy of Temporal and Spatial Domain Signal

Processing

It is routine to remark that there is a mapping between signal processing in

the time domain and array processing in the spatial domain. It is filter theory

applied in different domains. The usual mapping noted is the relation b,-tween
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linear arrays and sampling in the time domain. It would be of interest to take

theory of array processing and map it back to time domain processing to see

what can be learned.

8.3.6 State Space Processing

The paper by Prasad and Chandna [208) proposed use of a state space approach

to bearing determination for a uniform line array with a canonical correlation

approach for solving for coefficients. Using these two ideas the concept might

be generalizable to an arbitrary array. The techniques of this thesis come

to bear in choosing the number of significant eigenvalues in the canonical

correlation.

8.3.7 Application to Intensity Measurement

There might be some application of the statistical work developed in this thesis

to the estimation of noise when setting up an intensity measurement exper-

iment, and later accounting for noise in the analysis of data. Since pressure

is treated as a complex quantity it is natural to apply statistics of complex

variables when examining sources of variation. For example, one could esti-

mate the noise field at different locations before turning the source on. Dur-

ing the experiment, you then have the ability to perform a hypothesis test

to determine if a nodal line in the field has been found. You test to see if
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the observed pressure is statistically significantly different from the previously

measured noise-only case. The same test, interpreted in another way, tells you

the chance that the data you are getting is something other than noise. For

another example, you could use the covariance matrix decomposition of data

from 4 microphones to determine directions of arrival in three dimensions and

estimate the variance from that direction.
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Appendix A

MATHEMATICAL BACKGROUND

A.1 Organization of Appendices

Much of the material presented in this and other appendices to follow is new

in the sense that the forms presented here have not been expressed explicitly

in the context of a development of the algebra of complex valued vectors and

matrices. Likewise, most of it is old in the sense that the basic concepts

are well understood, occasionally have been proven for a more general case

which includes complex variables, or are so trivial that no one thought them

important enough to write down for publication.

The appendices are arranged as follows. The first set (A-F) consists of

material for this thesis which is necessary background and which I think readers

would be most interested in referring to. This set includes the appendices on

matrix differential operators, definitions and properties of distributions, and

density functions of distributions. The material on characteristic functions is

especially important, and also fun.

The second set of appendices (G-J) consists of very important abstract

mathematical background which any researcher desiring to extend or critique

this thesis must master, but which I think is of secondary interest to the

reader who wants instead to be a user of the results of this thesis. This
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second set includes the appendices on zonal polynomials, group theory, Hilbert

space, and complex vector space. I expect this to be of primary value to

those with engineering background who need to quickly understand the group

theoretic concepts. A mathematician will find this section trite. I found

the source material on zonal polynomials at times very difficult. Perhaps

the most challenging and important contributions of this thesis are found in

the appendix on zonal polynomials. My hope is that you will realize a time

savings in developing an understanding by this translation from the language

of mathematicians to the language of engineers.

The third set of appendices (K-P) consists of basic linear algebra of complex

matrices. It is material I expect any technical senior undergraduate to be

capable of producing, but which is not assembled elsewhere in texts or the

research literature in an expository fashion. The real variables forms of most

of these results are part of the routine working set of knowledge for people

who have had one reasonable course in matrix algebra. It is included because

the details of the results are used throughout this thesis and I have noticed

that the similarity of forms with the real variables cases have occasionally led

other researchers to make minor errors by a factor of 2, typically with constant

multipliers or powers.
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A.2 Mathematical Background References

Although this thesis is of primary importance to engineers, the type of math-

ematics used in this thesis is outside the usual background of either engineers

or statisticians. There are a few good books that provide good preparation

for the material in this thesis. Even though a thesis is supposed to be self-

contained and stand alone, knowing which references are useful makes the

process of reading and learning far more efficient. It may also help provide

the background for specialized terminology which I may not have adequately

defined for a serious reader.

A.2.1 Linear Algebra

There are some very good books on linear algebra. My favorite is the quality

text by Broida and Williamson [47]. Beyond the regular fare of linear algebra

texts an engineer is likely to study from, it introduces groups in a natural

way early in order to build on the concept. It has a very nice treatment of

determinants and polynomials. Its presentation of a polynomial as an n-tuple

is the key to avoiding the differential operator which Gross and Richards used

in their development of zonal polynomials. Broida and Williamson also discuss

multilinear mappings, exterior products, and Hilbert spaces. Also of interest
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to engineers and physicists, they have a very nice introduction to tensors.

Another linear algebra text with a solid development is by Nomizu [1931.

This is an undergraduate text intended for mathematics majors. Chapter 8 of

[193] is very important for distinguishing properties associated with Hermitian

(A = AH), unitary (AAH = AHA = I), normal (AAH = AHA), symmetric

{[(Ax, y) = (x, Ay)] for all x, y E V}, and orthogonal transformations. Note

that there exist complex orthogonal transformations (ATA = AAT = I) as

well as unitary (BHB = BBH = I) transformations, yet A # B. I know of

no other text that points out these distinctions. In extending work from the

real field to the complex field, this means that one cannot take for granted

that properties claimed as the important ingredients for a proof really are the

ones being used. In working with the field of real numbers, often stronger

conditions are hypothesized when weaker ones would do. This is because for

symmetric positive definite matrices, the matrix having the various properties

coincide.

The book on numerical linear algebra by G. W. Stewart (259] is a gentle,

yet mathematically respectable, advanced undergraduate or first year graduate

text that treats complex matrices when it can be done without much additional

effort. Chapter 5 on eigenvalues and eigenvectors is developed in Cn, which is

the natural setting for discussing Gerschgorin disks. This is a classic example

where working in C makes a topic real easy, and working in R makes the



286

discussion very complex. He has a nice treatment on norms and condition

numbers. He recommends perturbation estimates as a quick, non-rigorous

look at what might otherwise be a mathematically difficult problem. Stewart

and Sun coauthored a fine sequel [260] devoted to perturbation analysis that

is also worthy of use. Among other topics, this book examines the relationship

between the singular values of a matrix and partitions of that matrix, and also

singular values of linear transformations of that matrix.

The book by Horn and Johnson [112] is a major important text that de-

serves to be read as a prerequisite to Rao's text [213] on multivariate analysis.

Among its various topics, this book discusses complex symmetric matrices and

Gershgorin disks. It has an encyclopedic treatment of matrix algebra. It does

not treat differentiation or integration of matrices.

A.2.2 Multivariate Statistics

C. R. Rao's book [213] is a wonderful treatment of multivariate statistics.

He does not shy away from powerful generalizations where it can be done

profitably. He uses matrix notation throughout. He shares with Skudrzyk

[248] the wonderful habit of carefully laying down the mathematical tools

before leaping into the subject material requiring it. Unlike this thesis, the

mathematical background is not hidden in appendices. He introduces those

points of measure theory necessary for later work. C. R. Rao's references are
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extensive and reflect a respectful sense of history.

The text by Eaton [74] is suitable for preparation for working with complex

statistics because he approaches the subject using vector space and invariance

methods. Other than Miller's books, Eaton's book says more about statis-

tics of complex variables than any other multivariate text I have found. He

includes some discussion on complex statistics and the relationship to statis-

tics of real variables. Eaton is a nice repository of clever insights that make

derivations much easier. For example, he imposes the condition T = TH to

take advantage of the Hermitian symmetry of the covariance matrix to gener-

ate a change of variables of the standard complex normal distribution. This is

used to obtain a chi-square distribution which becomes the seed for growing

the Wishart distribution. This is a worthy book to study after reading Broida

and Williamson.

Another nice text on multivariate analysis is the one by Arnold [31]. This

book is an important contribution to the literature. It is remarkable for

its clear development of properties of multivariate distributions and testing.

Arnold makes it natural to think of statistics from a multivariate point of

view, and to view univariate statistics as special cases. He applies group the-

ory sparingly, but does so where it is clearly advantageous. Arnold's proof of

the real Wishart distribution density function by induction is a contribution

to the conceptual development. His presentation of the real matrix normal
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distribution is also important.

A.2.3 Abstractions

Group invariance in statistics is a tc -ic in statistics that has generated much

attention by leading researchers in statistics, and is slowly making its way into

the training of graduate students in theoretical statistics. I know of no simple

text that introduces the concepts of group invariance, yet this subject is at the

core of knowledge needed to make progress on the order estimation problem.

One monograph that has proven useful is the 1989 work by Eaton [75]. It

begins with topological groups and discusses Haar measure by page 6. The

second chapter on group actions covers very rapidly the material covered by

Vilenkin. He covers the very important topic of maximal invariants.

A text that is referenced by most authors at some point in the develop-

ment of theory regarding zonal polynomials is the book by Littlewood [167].

This book is not one that can be rushed through, but rather must be worked

through. Be prepared for lots of subscripts and tensor style notation. The

reader should also have a basic understanding of abstract algebra and group

theory. Mastery of this text will build a background not available from other

sources which is necessary to understand current literature. Of particular

interest, he treats groups of unitary matrices.
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A.3 A Real Complex Treatment

It may seem unreasonable to the educated reader why I have bothered to

prove some apparently obvious theorems in matrix algebra. The answer is

that not all properties taKen for granted in the real variables case carry over

to complex matrices. Lack of attention to such issues has led some very well

respected researchers to write down erroneous results by inspection based on

forms known froin the real variables case.

A clue that a result might need to be reproved (in both senses of the word)

is when it requires symmetry or uses a transpose. Symmetry and Hermitian

symmetry can both apply to complex matrices, yet they impose different prop-

erties. Symmetry has group theoretic properties which were used by earlier

workers in the development of zonal polynomials for the application to the real

Wishart matrix. In the development of linear algebra for real variables, the

properties of symmetry and adjointness often go together and thus are often

not distinguished when a proof requiring a property is done. They are usually

treated synonymously. In Cn, you can not afford that luxury.

In the context of linear operators, the function of the complex vectors x

and y defined by < x, y >= xHy defines an inner product in the n-dimensional

complex space Cn, whereas the function defined by (x, y) = xTy does not. In
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both cases you can produce an orthonormal set of vectors using an appropriate

different version of the Gram-Schmidt process, but the results will in general be

different. I have defined the inner product to be linear in the second argument

rather than according to the mathematician's preference for assigning that

property to the first argument. This was done to make use of the Hermitian

transpose notation which carries with it natural meanings within the context

of acoustics, engineering, and physics.

The space Cn is not the same as R2 n. The structure imposed by the

multiplication operator for complex numbers changes the nature of the space.

This appears to not be widely understood, and it is very important to this

thesis. Because of this, a few examples will be given to illustrate the problems

involved. Smirnov [249] provides the following example.

The vectors u = (1 + i,2i) and v = (1, 1 + i) in C 2 are linearly dependent

over the field of complex numbers C, but are linearly independent over the

field of real numbers R. In the complex field C, we have

u - v = = = (i,-1 + i)

This implies that

iw= (1,i + 1) = (1,1 + i) = V

We observe that

-i(u - v) = -i(i,-1 + i) = (1,1 + i) = V
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Therefore

-iu + iv - v = -iu - (1 - i)v = iu + (1 - i)v = 0

which proves that u and v are linearly dependent. Now consider the same case,

but in the field of real numbers R. We vectorize u and v, by putting the real

parts in the first two elements and the imaginary parts in the next two elements

to obtain u = (1,0,1,2) and v = (1,1,0,1). Then u- v = (0,-1,1,1) = w.

Then -w = (0, 1, -1, -1) 0 v. We see that u and v are linearly independent

when considered in R. To multiply by i in R where x = a + ib = (a, b),

you must compute ix = ia - b = (-b, a). This implies iw = (-1,-1,0,-1)

or -iw = (1, 1,0, 1) = v. When you are restricted to R, the representation

of Cn in R is not merely R2 . You have to modify the definition of scalar

multiplication to allow a corollary to i = V/-1T.

We can represent complex numbers in matrix form, but not every choice

will do. There is even a problem with multiplication by scalar complex num-(10 (1 0
bers to be considered. Suppose we let u = and v = (
Then (0 0

0 1
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This is not even close. Suppose instead that we try

1-1 1 0

11 0 1

0 -2 1 -1

20 11

Then

0 -1

1 0

-1 -1

1 -1

which is what we want. We see that -i is represented by the matrix (
-1 0

Matrix multiplication for the form -iw is not defined because the matrices -i

and w are not conformable. That is trying to multiply a 2 x 2 matrix by a

4 x 2 matrix. Instead, we must compute

0 -1 1 0

1 0 1 0 1
w(-i) = -Wi = -

-1-1 -1 0 1 -1

1 -1 1 1

This is what we want.

The understanding that there are problems with differentiation when work-

ing with quadratic forms in complex variables is not widespread. A common
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error is to apply the method of Lagrange multipliers via using derivatives to

solve optimization problems. For example, in an otherwise very nice text, one

author attempted to solve the problem

min w HOTw subject to cHw = f
W

by Lagrange multipliers. The derivativedwHOTw does not exist except in the

case that 4 is a diagonal matrix. When 4 is diagonal, the derivative exists

only at w = 0, at which point it is zero.

A.4 The Rest of the Story

In this appendix, I have attempted to justify the documentation of the devel-

opment of topics in statistics, matrix algebra of complex variables, and group

representation theory which will be presented in following appendices. The

use of complex variables is perhaps "too natural" in that we presume we know

how to properly make the transition based on our experience with univariate

complex variables and with matrix algebra of real variables. This is a false oa-

sis. To help ease the transition, some references which have been very helpful

to me are recommended to you to help shorten your transition period. Per-

haps these may also provide some enjoyment to you as well. The structure and

repetition of this material can be appreciated much in the manner of a poem.

It takes patience, knowledge of the language, appreciation of the cultural con-
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text, some understanding of the object of study, and a good environment for

reflection and introspection.



295

Appendix B

MATRIX DIFFERENTIAL OPERATORS

B.1 Complex Derivatives

A major difference between working with real variables and working with com-

plex variables is the extra care required to ensure that the desired derivatives

exists. This has a major impact on the allowable approaches used to solve op-

timization problems. The theory of complex differentiation and the Cauchy-

Riemann equations are part of any good course on complex variables. The

purpose of this section is to raise a caution flag that some often used relation-

ships in the case of real variables do not work for complex variables. Frequent

errors in the adaptive beamforming literature has demonstrated that discus-

sion of this topic is necessary. We begin by considering some simple functions

whose derivatives do not exist.

The derivative of a scalar function is defined by the following.

d f (z) =lim f (z + Az) - f (Z)

Tz-..-o A z

The derivative does not exist if your answer depends on the path though the

complex plane taken as Az --- 0.
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B.I.1 Computation and Cauchy-Riemann Equations

Recall from the development of the Cauchy-Riemann equations that when the

derivative exists, then there are two ways to compute it. These are given by

Wunsch (pp. 52-55) [294]. Let z = x + iy, u(z) = Re{f(z)}, and v(z) =

Im{f(z)}. Then

d (9- OV 0
f'(zo) f - + z-) = -f(z)

zo Xo, Yo Zo

and

d .diu +dv)-a
f'(zo) = -Zf (Z) 5-'-ff y +

ZO XO1 YO ZO

These generate the Cauchy-Riemann equations

au 9v and __v = u (B.1)

Satisfying these equations is a necessary, but not sufficient, condition for

the existence of the derivative at zo. These conditions are sufficient when
8u0 u _nou,v, ,yLu,, and L are all continuous functions in the neighborhood of

zo. See Wunsch [294] for an excellent tutorial on this subject.

By substituting the Cauchy-Riemann equations back into f'(z), we find

d a (a .a ~ a Ndf (Z) = ~f(z) = - U(y)= i _ i v(z) - -( f(z)do 5x (W- ý-)( x T
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when f(z) exists. Note that _L + ii) f(z) = Af(z) - df(z) = 0.

Caution. When you face a situation in which a derivative does not exist,

you can not assume the derivative to merely be zero and ignore it. When the

derivative does not exist, that means that any subsequent work requiring that

derivative does not apply and cannot legally be used. This means you need to

determine if there is another way to solve your problem.

B.1.2 Derivative of the Conjugate of a Variable

The following material appears very elementary, yet some very respected au-

thors in adaptive beamforming and complex statistics have not understood it.

Therefore, inclusion of this material is mandatory. It is this particular deriva-

tive which is the root of most mistakes in the literature, and is the foundation

for the lack of existence of many other derivatives discussed in this section.

Let z = x + iy and z* = x - iy. Then Az* does not exist, anywhere. This

proof comes from Spiegel (p. 71) [253]. By definition,

d _________ +_A__*_________+____+A _+__________+__Y

d ,= lim (z+Az)*-(z)* = lim (x+iy+ax+iay)*-(x+iy)*
dz AZ-,O Az AX-0o Ax + iay

=lim x-y A -~-~y=lim A -a
Ax--o Ax + iAy A~x-o zA'X + Zay
Ay--O &Y--0

Suppose Ax =0. Then z*= lim A =--1. Now suppose Ay =0. Then

dAz* - lim • - 1. Thus the answer you get depends on the path you take
dz AX-e0 p

to get to the point which you evaluate the derivative. Here it is seen that there
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is no point zo at which Az* exists. In particular, Az" does not even exist at

zo = 0.

Note that this implies A Re (z) and A Im(z) do not exist because Re (z) =

-(z + z*) and Im(z) = (z - z*). Since the derivative is a linear operator and

d z* does not exist, then these other derivatives also do not exist.

B.1.3 Derivative of the Magnitude

This was motivated by the discussion by Wunsch [294]. Although I have

not looked for a statement of this result elsewhere, it is so elementary that I

presume this is not an original result.

Let z = x + iy and thus Izi = (x2 + y2)1/2. Then A Izi does not exist

anywhere.

d Iz +AzlI- IzI Ix + iY +±Ax + iAy - Ix + iyI
W-- Izi = lira lim

Izf A-o Az ,,-o AX + iAy

- lim ((x + Ax) 2 + (y + Ay) 2)1 /2 - (x 2 + y2)1/ 2

AX•- Ax + iAy
Ay.-.O

= lim (x2 + y2 + 2(xAx + yAy) + (Ax)2 + (Ay) 2)1 /2 - (x2 + y2)1/ 2

AX-.. AX + iLay

Suppose Ax = 0. Then

d (x2 + y2 + 2y(Ay) + (Ay) 2•)/ 2 - (x 2 + y2)1/2
d-z Izl- limT Z lmA-.O iAy

At this point, we note that

Vra -+b -v~= 2a + b - 2a(a +b)
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which implies

dr X ) 2 2+y)X y2 + 2y(Ay) +L (Ay)2)l
d-,- Iz = lim + -Ay - 1 - 2,, A-,o 0 (AY•),I

which is unbounded, and tends to ico if y > 0. This limit does not exist. This

is sufficient to show A Izi does not exist. Just for completeness' sake, suppose

Ay = 0. Then

d = (X2 + Y2 + 2x(Ax) + (Ax) 2)'12 - (X2 + y 2)1/2dz Izi =Air
Y AX--0 AX

This is unbounded, and ten. (o oc i' x > 0. Suppose z = 0. If Ax = 0 then

- 1d-•IzI - limn -1 -2 1 -- i2
S-0Ay) 2

Suppose Ay = 0. Then

d
d Izi = lim (1) = 1

Thus A jzj does not exist even at z = 0.

B.1.4 Derivative of the Magnitude Squared

This is essentially the work on pp. 56-57 of Wunsch [294].

Here, we find that - Iz12 exists only at z = 0, at which point the derivative

is zero.

d Iz + AzLZ12 _IZ I(X + Ax) + i(y + Ay)12 -Ix + iy 2

d- Iz12 = lira = limhz-...O AZ AX--. AX + iAy
Ay.-.O

lim X2 + 2x(Ax) + (Ax) 2 + yl + 2y(Ay) + (Ay) 2 - X2- y

X--.o Ax + lAyAy.=O
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= lim 2x(Ax) + 2y(Ay) + (AX) 2 + (Ay) 2

A--,o Ax + iAyAy==O

Suppose z •: 0 and Ax = 0. Then

d IZ12 = 1r 2y(Ay) + (Ay)2  2y
dz AV-,o iA /Zy

Suppose z :A 0 and Ay = 0. Then

d Z 2x(Ax) + (Ax)2 2
d- 1z12 

- limO AX

Thus _ Iz12 does not exist for z 5 0. Suppose z = 0. Then

d iAz 2 = urn (Ax) 2 + (Ay) 2

d- 1z12 = lin -lim A
t z-*O Az 6X-, Ax + iAy

Thus _ jz12 exists only at z = 0, at which point the derivative is zero.

B.1.5 Derivative with Respect to a Vector

The familiar rules for differentiating with respect to a vector or matrix holds as

long as the function does not contain the conjugate of the variable you are dif-

ferentiating with respect to. Several frequently used derivatives with respect

to a vector are presented below. Real-variables versions of these have long

been established. Complex versions have often been used, with correspond-

ing evidence in the literature by well-respected authors that these results are

well unknown. Systematic development of these results is an easy and major

contribution of this thesis which could be done by any senior in engineering.
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Let z be a complex vector. Then

d
dzj

d f(z) def f(z) (B.2)

dz f (Z)
kddz

For a E Cn, Let f(z) - a T z. Then

a,

d T d n - d T
___aizi =a= z a (B.3)

dZ -=- dz

an

For a E Cn, Let f(z) = arHz. Then

H d - i=1

Note that d zH a does not exist.

For A E Cnxn and f (z) = zTAz. Then

al ZI

dz TAz = dz (zl,'",zi -n) i
dT dz

where ai E Cn. When expanded, this is

d ( z=d n

i----z i=, j=!
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To visualize this easier, I will write this out ad nauseam. It is

auz2 + a12zJz 2 + + alznzn

+a 21z 2 zl + a2 2 z2 + -.- a 2 nZ2Zn

d
d-- +a 3 1 z 3 z 1 + a 3 2 z 3 z 2 -+-' + a3nZ3Zn

+anlznzi + an2ZnZ2 +"" + an n

where the term in the brackets is a scalar and I have arranged it to give insight

how the terms arose. Taking the derivatives, we get the column vector

2a1,zl + (a 12 + a2 l)Z 2 + (a 13 + a31)z3 + + (ain + anl)zn

(a12 + a2 1 )Zl + 2a2 2 z2 + (a 2 3 + a 3 2 )z 3 + + (a2 n + an2)zl

(a 13 + a31)z1 + (a 23 + a32)z2 + 2a33z 3 + + (a3n + a, 3 )zn

(aln + anl)ZI + (a2f + an2)z2 + (a3n + an3 )zn + + 2annzn

Let

a,

a 2

A -= (a1, a2,, ,an) =

an
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Then

(a, + (a')T)z

dzT Az = = (A + AT)z (B.5)

(a, + (an)T)z

If A = AT, then _zTAz = 2Az, which is the familiar result often cited in

the real variables case. The only requirement here is that A must be square.

Note that the matrix in the answer is always symmetric even though A is not

required to be symmetric.

Some simplicity is achieved if A = AH because the (ai) are merely trans-

posed, and not conjugated. Thus A = AH implies

A+A T = A+ A* = 2Re(A)

Thus, if A = AH, then

dzT = 2[Re(A)]z (B.6)
d Az

Now consider the case of dzHAz. This is the specific derivative that is

most frequently abused in the literature when approaching a linear optimiza-

n n

tion problem in adaptive beamforming. Expanding, we get d Ei l z~aiz..
i=1 j=1

However, we recall that -iz'ýaiz. does not exist when i 5 j. Therefore, I zHAz

does not exist when A is any matrix except a diagonal matrix. When A is a di-

agonal matrix, the derivative exists only when z is the zero vector. When this

is true, the derivative is zero. When faced with the desire to try this derivative,
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one should instead attempt other techniques like completion of squares or a

projection based technique. Note that the method of Lagrange multipliers can

be pursued without taking derivatives even though the usual approach in the

real variables case almost always uses a derivative in the solution.

A similar form is f(z) = zTAy. Let

a,

a 2

A=

an

Then

a l y

T ~ a2y n

zT Ay= (z1 , z 2 ,•"",z ) =_ ziaiy
:=1

any

Taking the derivatives, we get

al y

d na 2 Y dT
Sziaiy= Ay = zj Ay (B.7)dZ i=I d

any

Since zTAy is a scalar, it equals its transpose. Thus yTATz = Ay. Similarly,

dz

since yH Az = zT ATy*, we see that -9yHAz = ATy*. For the case of zHAy, we

know the derivative AzHAy does not exist.
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Let

d Az) d d ..-- f
dz z) dz 2 ' fdz )

Then

d2 d2  
d2

d z2 dzl dz2  dzi dzn

dd2 
d2 d2

dz (dZT) f(z) = dzdzT J(z)= .... f(z)

d2 d
2  

d2_

dz~dzndz dzndz2  dzn

which is the Hessian matrix operator on f, which I will call X7. Note that

S= H T . I f a l l o f t h e d e r i v a t i v e s a r e c o n t i n u o u s , t h e n H = 7 J T s i n c e t h e

continuity of derivatives allows the order of the derivatives to be exchanged.

Recall that
(a, + (a')T)z

dzr Az (a 2 + (a 2)T)z = (A + AT)z

dz

(an + (an)T)z

Then

d/'TZ Az = A + AT

Again, -- •d2  HAz does not exist. Similarly, d2 
z-HA. and d2 zTAz.g do not

exist. If A = AH, then

ddz mAz = 2Re(A) (B.8)
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B.2 Derivative with Respect to a Matrix

Let Z be a complex matrix with elements {Zij}. Let f(Z) be a scalar valued

function of Z. The function f may take on complex values. When f is a

differentiable complex function, then define

aZ11  -Z12  az1ý

a a adf (Z) def 'z 2' 5Z22 oz2, f (Z) (B.9)

a a a
aZml 8Zm2  azmn

Note that when this exists, then

dRf(Z) 5 9Z}lf(Z) (B.IO)

When Z = X + iY, then

-a a aaXll aX 12  OXI.

a a a
a X72, a5X22  aX2n (ZT_•f(Z) = d7Xf(Z)= Pxo, o, fZ)

a a a
aXmI aXm2  axmn

Suppose f(Z) is itself now a matrix,

f, 1 (Z) fl 2(Z) ... fIq(Z)

f(z) = f 2 ,(Z) f 22(Z) ... f2q(Z)

fP,(Z) fP2(Z)... fpq(Z)
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Then Jf(Z) is an (mp x nq) complex matrix where each -,f(Z) is a (p x q)

matrix. The desired form is the "right hand" direct product of 2 and f(Z).

The matrix Jf(Z) has the form

dZd oaf_ ... a

d( =(B.11)

8f l o _ ... af_

8Z.1 aZ..

where 
A . anA

az 1 1  az1 k0af
AOR = " "(B.12)09zjk

az 2 1 B azo2  J

Caution. This is much different than doing a matrix multiplication of the

operator matrix by the function matrix. The more correct analogy is the

direct product (8o) 0(f (Z)).- Even with this interpretation there is danger of

al ab12 Ab1 b1

ambiguity. For example, let A =and B =.AO®B

a21 a22 b21 b22

has been interpreted differently by various authors. The interpretation that

yields the form above is

ajjB a12B

A®R B = (B. 13)

a21B a22B

This is not the same as

Abil Ab12

AOLB= (B.14)

Ab 21 Ab 22
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which is a "left hand" direct product. Because of the ambiguity, it is good

practice to write out a definition for your readers. If you choose to use the left

hand direct product for (-) ®L (f(Z)), make sure your further derivations

are consistent.

A result for real variables that carries over to complex variables is the

derivative of a determinant with respect to a matrix element. Let A E C 7x

be a complex matrix with elements aij and minors Xij obtained from A by

deleting row i and column j from A. Computing det(A) by cofactor expansion

down column j gives us the following.

n

det(A) = ,(-1)'i+aij det(Xij) (B.15)
i=1

Note that akj appears only once in this expansion, when i = k. If we take

the derivative of det(A) with respect to aki, we get just one term if all the

a,, are algebraically independent. Thus -- det(A) = (-1)'+j det(Xii). When

A = AT, the E'ements off the major diagonal are algebraically dependent such

that aij = aii. In this case,

- det(A) (-)+jdet(Xii), =j (B.16)9aijI (1)i+j 2det (Xij), i :ý j (.6
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For the algebraically independent case, - det(A) =

(-1)1+1 det(Xn) (-1)1+2 det(X 12 ) ... (_1)1+n det(Xln)

(_1)2+1 det(X 21) (-1)2+2 det(X2 2 ) ... (-1)2+n det(X 2n)

(-1)n+l det(Xnl) (_1)n+2 det(Xn2) ... (_-1)n+n det(Xnn)

Thus we observe that

Sdet(A ) = (adj A )T (B .17)
aA

When A- 1 exists, then

a det A = (A-' det A)T = (det A)(A-')T = (det A)A -T (B.18)
8A

Caution. Suppose A = AH is a 2 x 2 matrix . Then
a1 2 a 2 2

det A = - alaa 22 - a12 12]
8a12 i9a12

exists only at a12 = 0. Suppose A = A" is a 3 x 3 matrix

all a 12 a 13

A a12 a 2 2 a 2 3

a1 3 a 2 3 a33

The determinant is

det A = ala 22a33 + al 2a*3 a23 + a*2 a13a. 3

- Ja13 12 a22 - all ja23 12 _ Ja1212 a33
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From this, we see that for i 6 j that 8 det A does not exist because ' a.

does not exist anywhere.

Let us examine this one step further. Consider T = TH and B, both in

M2(C), and - det(BT).

BT bil b12  tIt 12 '~ (blitil + b12tI*2 bjjt12 +±l~2BT= )=)
b21 b22  t1 2 t 22  b21til + b22 t1 2 b21 t 12 + b22 t 22

and

det(BT) = (blltlX + b12 t1 2 )(b 21 t1 2 + b2 2 t 22 ) - (b 21tII ± b22 t12 )(bllt 12 + b12 t 22 )

From this we see that

a (B = (bllta +bi 2 t• 2 )](b 21tI1 2 + b2 2t 22 ) + (b6t4 + b12 t 2 ) b21
a12 det(BT) = 1*2(lt,+b~*2]1t

- [£ (b21t 11 + b22t*12) (bl1t12 + b12t22) - (b21t41 + b22t12) bil

which does not exist because 0-At12 does not exist, anywhere, even at zero.

In fact, for T = TH and B. both in M,(C), only 8 det(BT) exists. Thus,

_ det(BT) does not exist. Similarly, 2 det(A - iBT) does not exist when

T = TH. This specific example will become very important in a moment (in

both senses of the phrase).

The interested reader is encouraged to read papers by Tracy and Dwyer

[267] and Dwyer [72] for the case of real variables.

One of the implications is that when dealing with complex variables, the

usual maximization or minimization problems cannot, in general, be solved by
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taking derivatives. This includes the usual implementation of the method of

Lagrange multipliers for constrained optimization problems. (For a successful

application of the method of Lagrange multipliers applied to complex variables

for adaptive sonar beamforming, see the paper by Cox [61].)

B.2.1 Linear Transformation of a Vector

Let z = Tx where z, x E C' and T E C"'". Let f be a differentiable complex

function. Then
of T T'0f

This is a complexification of an unnumbered lemma found in Muirhead (p.

240) [1871, which is stated without proof.

Proof. By definition,

Of
49x

Also,

Of 4Oz 19f
Oxi ,= Oxt 0z3

Thus

ax, ax, aX, Z
Of _ _

af def P 0 I
Ox 2 ... -: de 2-

,az,1 .. a,.
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Recall that

ZI ~Ti I ... T. X T z/
i = i ". i =Tx=z

z ,, T ,.1 ...T ,, - X -

n
Then zj = , tjixi and - = tji. From this we see P TT. Therefore

tOxi

af __TT 1f
a X WzL

B.2.2 Derivative of a Matrix with Respect to Itself

Lemma 1 Let

f

nC!

where ,ej is the elementary vector of size n consisting of all zeros except for a

1 in the jth position. Let X E Cnxm. Then

dX En Em

Proof.

dX dX dXmdX d_.KX d_.KX .. dX
dX 21  dX12  dXIm

dX dX dX
dX dX2 1 dX 2 2 dX2m
dX

dX dX dX
dXnl dX.2 d...
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Consider

dXU_= ... dX_, ... dXm
dX,, dXi, dXI

dX ... dx ... dx,, , ,meT

dXij dXi " dXj dXj

dXnI_ ... dX-_• .. dX.._
dXi• dXij dXij

This is an n x m matrix of all zeros except a 1 in position (i, j). Thus

T eT . T
nel mel nel me2 .. n mem

dX ne2 mel ne2 me2 . ne2 mem T-d-X= : EE

T T .. T
ne me1  nen mne2 n.. mem

This is an n2 x m2 sparse matrix with only nm non-zero cells. Each nonzero

cell contains a 1. Caution. For n x n square matrix X,

X2 = XX = ((f~ m)

0, i: k, j # l, ij

X~j, i= k, 11 ,

Xik, i3 k,=l, j #

d 1 (-XXm= ) Xkk + X 11, i=k, j=, i jdXkI M=1 ij

2Xkk, =j = k = l

0 i=j=k, k#l

0 i=j=l, k#l
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X 12  0

dX 2  X 11 + X 22 X 12  d 2X d (B.19)
dX 2dX

n2 xn 2

meaningles

Xn2

n2 xn
2

Thus, the usual differentiation scheme for polynomials does not apply. I.e.,
dX2 IX

dX 2X dd.

B.2.3 -,,Athans and Schweppe Theorems

Athans and Schweppe [34] published a technical report with many matrix

gradients for the case of real variables, complete with proofs. These have been

quite useful in this and other works. This paper was brought to my attention

by Ferlez [82] in a series of very interesting and helpful discussions. What

follows is a complexification of this convenient paper. I have supplied the

proofs and occasional related corollaries.

Proposition 5 Let Z E Cnxn. Then -L tr(Z) = In. This is a complexification

of equation (1) in the appendix of [34].
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n
Proof. tr(Z) = E Zi.

i=i

aZ ktr(Z){0 j~kOZjk[ 1, j= k

where the {Zjj } are all algebraically independent. In particular, Zji 5 Z$ j for

any i 0 j.

Proposition 6 Let A E Cnxm and Z E Cmxn. Then - tr(AZ) = AT. This

is a complexification of equation (2) in the appendix of [34].

n m
Proof. By lemma 26, tr(AZ) = E E A 3jZji. When Zij 0 Zk1 for any

i=1 j=1

(i : k, j =Al), then - tr(AZ) = Alk. Thus - tr(AZ) = AT.

Proposition 7 Let A E Cnx m , Z E Cnxmr. Then - tr(A*Z) = AH.

n M a

Proof. tr(A*Z) = E E A*k, Z.l- 8 tr(A*Z) = A!.. Thus -2- tr(A*Z)= AH.
k=1 1=1

Proposition 8 Let AH = A E Cx"n and Z E Cx",. Then o tr(A*Z) = A.

Proof. By corollary 1, -8 tr(A*Z) = AH = A.

Proposition 9 Let A E Cnx" and ZH = Z E Cnxn. Then O tr(AZ) does

not exist.

Proof. -I tr(AZ) = % tr(AZH). tr(AZH) includes a term involving Z,.

oo.. - 2 * does not exist. Therefore - tr(AZH) does not exist. Note that this

does not depend on the structure of A.
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Proposition 10 Let A E C"x m , Z E Cnxm. Then tr(AZ T ) = A, and -I tr(ATZ) -

A. This is a complexification of equation (3) in the appendix of[34].

Proof. By lemma 28,

n m

tr(AZ T ) = tr(ATZ) = E AkZkI
k=1 1=1

Thus 8 tr(AZT) = Aij when all the Z1j are algebraically independent. The

full matrix is then tr(AZ T ) = A.

Proposition 11 Let A E C'~m , Z E C'× m . Then o tr(AHZ) =A*.

m nr

Proof. By lemma 29, tr(AHZ) = E A* tr(AHA . = A!. The
k=1 1=1

full matrix is 8z tr(A HZ) = A*.

Proposition 12 Let A E Cnx m , Z E CnX,. Then -az tr(AZH) does not exist.

Proof. tr(AZH) includes a term involving Z1',. -% does not exist.

Therefore • tr(AZH) does not exist.

Proposition 13 Let A E CmxP, Z E CPxq, B E Cqxm. Then a-2 tr(AZB) -

ATBT. This is a complexification of equation (4) in the appendix of [34].

Proof. By lemma 31,

m p q

tr(AZB) = ZAaijCjkBki
i=1 3=1 k=1
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tr(AZB) •' AirBsi = (Al•,... , Am,) def AT(Ba)T

Bsm

Then

AT(B') T  AT(B 2 )T ... AT(Bq)T

A trAZ) A(B1 )T A T(B 2)T ... A T(B,)T

-tr(AZB) 
2=o-z

A T(B1 )T AT(B2)T ... AT(Bq)T

AT
= AT ((B)T (B 2 )T ... (B)T)=IATBT

AT

where the elements of Z are algebraically independent. In particular, this does

not exist if Z0 = ZZ1 for any (i 0 k, j A I).

Proposition 14 Let A E C"P, Z E CqxP, B E C'qm. Then f tr(AZ T B) =

BA. This is a complexification of equation (5) in the appendix of [34].

Proof. By lemma 32,

m p q

tr(AZ T B) = AjZkj Bki
i=1 j=1 k=1

From this, we know

m

- tr(AZ T B) = E AisBr, = AsT(BT)T = B As
OZr. i=1
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since this is a scalar. A. is a column vector, and B" is a row vector. Then

"•2 tr(AZ T B) =

B1 A1 B'A2 ... BIAP B1

B 2A1 B 2A2 ... B 2AP B 2

: " '" "I !A l A 2 ... A p B A

BqA, BqA2 ... BqAp Bq

where all elements of Z are algebraically independent.

Proposition 15 Let A E Cm xP, Z E CqxP, B E Cqxm. Then -2- tr(AZHB)

does not exist.

Proposition 16 Let A E Cnx m , ZE C" Then E tr(AZ)= A. This is

a complexification of equation (6) in the appendix of [34].

n mn
Proof. By lemma 26, tr(AZ) = E AjZji. Then

i=1 j=I

a _

0 . t rA

0 tr(AZ)= tr(AZ)O- T

aZin aZ.

Looking at a particular element, we observe ' tr(AZ) = Alk. Therefore

All A1 2  Aim

0 A 21 A 22  A2m

aZT tr(AZ) = =A

An, An 2 Anm
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Proposition 17 Let A E Cnxm , Z E C m '"'. Then 8 tr(AZ T ) AT. This

is a complexification of equation (7) in the appendix of [34].

Proof. By lemma 27, tr(AZ T ) = E AukZuk. This implies 8 tr(AZ T ) -

1=1 k=1

Ai, which means -z tr(AZT) = A. This, in turn, implies

(9) tr(AZT) -ZT tr(AZ T ) = AT

Proposition 18 Let A, Z E C"'r. Then a and atr(AZH) do

not exist.

Proof. '-,Zij does not exist. Also, - Zij does not exist.

Proposition 19 Let A E CPxm , Z E Ctm×", B E Cn×p. Then • tr(AZB) =

BA. This is a complexification of equation (8) in the appendix of [34].

Proof. By proposition 13, - tr(AZB) = ATBT, which implies

0 tr(AZB) [ tr(AZB)]T = (ATBT)T = BAozT = =

Proposition 20 Let A E CPx", Z E Cqxm, B E CqxP. Then ' tr(AZ T B) =

ATBT. This is a complexification of equation (9) in the appendix of [34].

Proof. By proposition 14, o tr(AZTB) = BA. This implies

a tr(AZ = [B 0 tr(AZTB)IT = (BA)T = ATBTiiz- ATt•
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Proposition 21 Let Z E Cnxn. Then

T tr(ZZ) = Z tr(Z2) = 2ZT

and o 8 tr(Z2 ) = 2Z. This is a complexification of equation (10) in the ap-5z

pendix of [34].

n n

Proof. By lemma 30, tr(Z2 ) Y , • ZijZji. Therefore
i=1 .=l

Ottr(Z2)= Zk + Ztk = 2Ztk

which implies a tr(Z2 )- 2ZT Similarly, ° tr(Z2) = 2Z.

B.2.4 Derivative of Determinants

This topic addresses the computations that lead to the discovery that the

function referred to as the characteristic function for the complex Wishart

distribution was not the straight-forward function I had hoped it to be. The

function of interest is 4w(T) = [det (I, - iET)]- . I attempted to compute

moments of the complex Wishart distribution and did not obtain some forms

which I knew to be true via using other methods. Nevertheless, the following

forms may be useful in another context. I have not diligently searched the

literature for these results. Although I supplied the following results, they are

simple enough to have been done by any senior in engineering after exposure

to the simple results regarding differentiation of complex variables.
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Theorem 12 Let A E Cnxn, B E Cnx", and T E C mxn. Then

a det(A - iBT) = -i[det(A - iBT)][(A - iBT)-'B]T
OT

where Tij 0 Tk,.

m

Proof. The (ik)th element of the matrix (A - iBT) is (Aik - i Z BiLTtk)ik.
1=1

The operator •- is a matrix of operators --- Note that every element of

column k of (A - iBT) contains Tjk. We expand the determinant det(A - iBT)

down column k. Let Q = A - ZBT and let QPk be the minor of the element

Qpk obtained by removing row p and column k from Q. Then

det(A - iBT) =+ Apk - i ZBpITuk det(QPk)
p=l 1=1 pk

The (jk)th element of - det(A - iBT) is

det(A - iBT) = -(-I)p+k det(QPk)(-iBpj)
p=I

The full matrix is

a det(A - iBT)
eTT

n n

E(-1)P+l det(QP')(-iBpl) F (- 1)P"+ det (QP') (-I Bpi)..
p=l p=l

(-1)P+l det(QPI)(-iBp2) E ( 1 + det( p(_ p)
p=- p=

1

n n

E (-1)P+' det(QP1)(-iBpm) E (-1)P+ 2 det(Qp2)(_iBpm) ...
p=l p=1
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P=1

n

P=1

Let B,, ef (B,,E B,,_* Bp)pbe row (pnofmatixBp. Te etA-i

p=1j

Le pOf(pB2 p,)b o fmti .Then det(A - iBT)

aTT

=i1 ~BPT [(-1)P+1det(QP2 1  (-1)P+2 det(QP2 ).. (_1)p+n det(Q p )

Thende -L~f =e( C B
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We recognize Q-1  RT when Q-- exists. Thus when (A - iBT)-1 exists,

then •T det(A - iBT)

= -i[det(A - iBT)IBT[(A - iBT)-1 1T = -i[det(A - iBT)][(A - iBT)-'B]T

Note that if (A - iBT) does not have an inverse, then - det(A - iBT) = C

is still valid and will exist provided that each of the partial derivatives a

exists, which they do.O

Note from the discussion on complex derivatives that if m = n and T = TT,

then -2 det(A-iBT) does not exist. Regardless, the existence of the derivative

does not depend on any lack of structure, or the presence of structure, on A

or B.

Theorem 13 Let A E C'x× , T E CnXm, B E Cmxn. Then

49 det(A - iTB) = -i[det(A - iTB)][B(A - iTB) -]T
OT

where Tij # Tk,.

Proof. This is nearly the same as the previous identity. The (jl)'h element

of A - iTB = Q is given by

A11 - i E TjpBp)

We expand across row j is evaluating det(A - iTB) to obtain

det(A -iTB) = (A1 - iEZT 1pBp) [det(Qj')](-1Yj~'
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The (jk)th element of A det(A -iZTB) is ~I(-i)(-i)j+1 Bkl det(Qj') where Qj'
aT=

is the minor of element (jI) of Q obtained by deleting row J and column 1.

The full evaluation is

19det(A - ITB)

n (-1)2[det(Q 21)IBil (- 1)2[det(Q 21)]B21 .. (-1 )2 [det(Q21)IBmil

D101

n I (-1)2[det(Q 21)][Bill B 26, , Bin1 ]

Let BA be column I of matrix B, and

(- 1) 2 +1 det Q2 1

(-1 l det QnI
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Then

TB

'9 det(A - iTB) =-i QBT -i(Q 1,Q 2,. • Qn)
1=1

BnT

= -i(Q1,Q 2,...,Qn)BT

We recognize -ýT det Q =

(1)1+1 det Q11 (-1)1+2 det Q12 .. (-1)1+n det Qin

(-1)2+1 det Q21 (-1)2+2 det Q22 
... (-1)2+n det Q2n

BT

(-1)n+1 det Qnl (-1)n+2 det Qn2 .. (-1)n+n det Q~n

= -i[det(Q)]Q- T B T = -Zi[det(Q)](BQ- 1)T

Therefore

0 det(A - iTB) = -i[det(A - iTB)][B(A - iTB)-1 1T
OT

As with the previous example, 2 det(Q) can exist even when det Q = 0. In

that case, it is evaluated as above, before using the adjoint form for an inverse

to simplify the notation.

Theorem 14 Let A E Cfxf, B E Cnxm, T E Crxn. Then

49 det(A - i(TB)T) = -i[det(A - i(TB)T)][A - i(TB)T]I-'BT
TT

where Tij :ý Tk*,.
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Proof. Element (jl) of matrix (TB) is • TjpBp1. The (jl)th element of
p=l

(TB) is in the (1j)th element of Q = A - i(TB)T. The (lj)th element of Q is

given by

Ijij - i E /j~p
p=I Ij

Expand down column j to obtain

det(A - i(TB)T) = j(A 1 j - i E TjpBpi)[det(Q')I(-1)'+j
1=1 p=1

The (jk)th element of - det(A - i(TB)T ) is

Ok ~ (A1j - i Z Ti,Bp,) [detQtj] (-1)1+' = (-i)E(-1)'+jBkldet(Q'j)
jTj k E (=1=1

where Q1' is the (lj)th minor of Q obtained by deleting row I and column j

from Q. Then -T det(A - i(TB)T)

(-1)1[det Q"]Bll -1) 1[det Q" IB21 . (-1)'[detQI"}B,,,

n (-1)2[det Q12]B11  (-1)2[det Q'2]B2 . (-1)2[det Q121Bm,

(-1)"[det1Q=IBj -1)n [det.QlB21 (-1)"[detQIB,,

(-1)' det Q1

n (-1)2 detQ'2
n -i 0Z (- l)Q (Bit, B 21, , Bmi)

W-1 det=Q
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Let 

i
BB1

B., 1

and let

Q= 1)+ det Q'1, (_~1)2+l det Q12,.., (-1)n~l det Q~nJ

Then

B T

det(A - i(TB)T ) _ i Z(QI)T BT ( 1 T ( 2 l Ql T

(-1)1+1 det Q"I (_1)1+2 det Q21 ... (-1)1+n det Qnl

- i (-1)2+1 det Q12 (-1)2+2 det Q22 ... (-1)2+n~de Qn2  B

(-1)n+1 det Qln (-l1)n+2 det Q2n.. (-1)n+n det Qnn

= -i[detQ]Q'B T

by Cramer's Rule, which implies

a det[A -i(TB)T] = -i[det(A - i(TB )T)] [A - i(TB)T~l-B T

Theorem 15 Let A E Cnxn, B E Cnm T E Cmxn , c E C. Then

-det(A - cBT) = -c[det(A - cBT)][(A - cBT)-'B]T

OT



328

where Tij # T*,.

Proof. Element (ik) of matrix Z = A - cBT is

Aik - C Bir k) =Zik
1=1 ik

The operator o is a matrix of operators ---, Note that every element of

column k of Z contains Tik. Expand det (Z) down column k. Let Zpk be the

minor of Z associated with the element Zpk, where Zpk is obtained from Z by

removing row p and column k from Z. Then

n

det Z = -(- 1)P+kZpk det ZPk
p=i

Element (jk) of ' det Z is

det Z = E(-,1)P+k[det ZPk](-cBpj)
,p=l

The full matrix is - det(A - cBT) =

n n•

E (-1)P+l [det ZP'I(-cBp,) ... E (-1 )P+"[det ZPn](-cBpi)
p= 1  p=l

n n

E (-1 )P+l [det ZPl](-cBp2 ) ... Z (-1)P+n[det ZP"](-cB, 2 )
p=-I p=-

p= 1  1=

Let row p of matrix B be Bp = (Bp,,1 Bp2,1"* , Bpm). Then -T det(A - cBT) =

n_C yEB T [(-l)P+l det(ZP' ), (-)p+2 det( Zp2),..., (-l)p+,, det( Zpn)]
p---
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n

-C EzBrTdet ZP
P=1

where

Therefore -5 det(A - cBT)

~cfBjT det(Zl) + B2Tdet (Z 2 ) + ± Bn~det (Zn)]

det Z' det Z'

det Zn det Zn

(-1)1+1 det Z11  (_1)1+2 det Z12 ... (_1)1+n det Z1 n

-_ BT (1) 2+1 det Z 21  (_-1) 2+2 det Z22  .. (_ 1)2+n det Z 2

=-c[det(A -cBT)]B 
T [(A - cBT) -JT

- c[det(A -cBT)]j[(A - cBT)-'HJT

since

1 1 adj Z
det Z det Z

k(- 1)n+' det Zn1 ... (-1)n+n det Znn

If Z-' does not exist, X =' det(A -cBT) is still valid and will exist provided

that each aT~ exists.
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Theorem 16 Let A E C11 n, and B, T E Cnxm, c E C. Then

adet(A + cBT T) = c[det(A + cBT T)](A + cBT T) 1B

where T3, 0 TI.

Proof. Let Z = A + cBTT. The (pj)th element of Z is given by

Every element of column j of Z contains Tjk. Expand det Z down column j

We see that

det Z = t(1P[Ap 3 + . Em Bp1T31] det Z"j

where Z~ is the minor of Z associated with Zr,,. Then

dTkdet Z : ~(-1Y~j+P(cBp.) det Z~'
a~jk p=1

'9 det(Z)

P=1 P=1

E (_ ) 2 £ (1BP) dt 2  F _ 12+ppmp) det Z"2
P=1 p=I

E *~ (-l)'+P(cBpm) det Z~
P=1
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Ec (BpliBp2 ,"..,7Bpm)
P~1

k(-1 )n+P det Zp'n

Let Bp, (Bp, 1 B,,2,.. B,B ) and

det Z"

Then

B,

~det(Z) =c[det ZP]Bp, c[det Z',detZ, . detZ]

C ~B =cRB

= c[adj Z]B = c[det Z]Z-1 B

when Z- 1 exists. Thus

adet(A + cBT T) = c[det(A + cBT T)1 (A + cBT T) -B

when (A + cBT T)- exists. Even when (A + cBTT)-1 does not exist,

adet(A + cBT T) = cRB

is valid when each 8- exists.
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B.3 Differential Operator D(Z) = + ia-A)

Work in this section was done by me. I have not searched the literature for

similar results. They are simple enough to have been done by any senior in

engineering after exposure to the simple results of differentiation of a complex

variable.

Definition 4 Define the differential operator D(z) which operates on complex-

valued functions by

D(z)f(z)= + - f(x + iy)

where x = Re(z) and y = Im(z). This form becomes useful when using char-

acteristic functions to evaluate expected moments of a distribution. We want

to learn some basic properties of D(z).

First, look at the relationship between D(z)f and Af for complex-valued

function f. Suppose the derivative I exists. Then by the Cauchy-Riemann

equations,

S~=0

Zo = 0 Zo= 0

This says that when •f(z) exists then D(z)f(z) = 0.

Let us consider a few simple cases.

D(z)z = (++ , (x + iy)= 1-1 =0 (B.20)
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D(z)z* = + - iy) = 1 + 1 = 2 (B.21)

D(z) Re(z) = + Z+ ) = 1 (8.22)
D 1z aez " )D(-z)-(B23

D(z) Im(z) = D(z) (z - z*) + = -(2iy)=i (B.23)

D(z*)z = - ) (x + iy) = 1 + 1 = 2 (B.24)

D(z) IzI = D(z)(x' + y)11'2  1 (x2 + y 2 )- 1 /2 D(z)(x2 + y 2 ) (B.25)

1 11 z
2z[(2x + i2y) =

Thus D(z) IzI produces a unit length vector pointing in the direction of z.

1 1 *y[ z* ( .6
D(z*) fzl = i -(2 y (B.26)

D(z) I12  a + yy(x 2 + y)=2x++i2y=2z (B.27)

D(z*) Hz2' = 2z* (B.28)

B.3.1 Vector Case

Let z now be a complex vector in C7. Then define

D(zi)

D(z)f(z) def f(z) (B.29)

D(z.)

For the following discussion, let a E C" and A E C,×n.
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Let f(z) = a Tz. Then

D(z1 ) 0
n

D(z)a TZ = ~ az 0 (B.30)

D(Zn) 0

the zero vector.

D(z)a H,,0 (B.31)

n n1

D(z)z TAz = D( Z) Ej ~ziAijZ3
=1j=1

A11z, A 12zIz 2 + + A1 nzlzn

+A2 lz 2Z1 + A22Z2 .* + A2nZ2Zn

=D(z) ±A3 lz 3ZI + A 32Z3Z2 + + A3nZ3Zn 0 (B.32)

+AnlznZ1 + An2ZnZ2 + + An~

All 1Z1 12 + A 12zj*Z2 + + A1nzlz,,

+A 2lz2zi + A22 IZ2 12 + + A 2nZ*Zn
D(z)z HAz =D(z)2

+AnlZn*Zl + A,,aa*,Z2 + -+ Ann k~ni1

2A11 z1 + 2A1 2z2 + . + 2A1nZn

2A 21z1 + 2A 22Z2 + + 2A 2nZn

2An1 Z1 + 2AnZ2 + -± 2AnnZn
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All A 12  . Aln z

A21 A22  A2, Z2
=2 = 2Az (B.33)

An, An2 Ann zn

Note that this result does not depend on the symmetry of A. The structure

of A does not influence the form of this result.

n

D(z)zT Ay = D(z) • zAiy = 0
i=1

for

A1

A-

An

Note that this exists and is zero.

" 2Aly

n

D(z)zHAy = D(z)_ z*A,y =2Ay (B.34)
i=I

2Any

n

D(z)yT Az = D(z) _YT A:z. = 0 (B.35)
i--1

for A = (A 1 , A 2,. -. , An). This exists and is zero.

2yTA'

D(z)YTAz* = D(z) yTAiz =
i=2 T

2yT An
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(Al)Ty

-2 - 2ATy (B.36)

(A-)Ty

B.3.2 Matrix Case

Let z now be an unstructured matrix in Mn(C).

Then

D(Zj)det Z = D(Z"") E (Sgn a)Z1,(1)Z2 ,(2)
aESn

n

D(Z1 j) 1 (sgna) 1i Zko(k) = 0 (B.37)
aESn k=1

Sn is the permutation set on n letters, and a(k) is the kth permutation in Sn.

Suppose Z = ZH is a 2 x 2 matrix ( Z12. Then
ZI*2 Z22

D(Z 12) det Z = D(Z,2)(Zll Z22 - IZ 12 12 ) = -2Z12

Now consider the 3 x 3 matrix Z - ZH. Then D(Z12 ) det Z

D(Z12 )[Z, 1Z 22Z3 + Z12Z, 3Z23 + Z;2Z13Z; 3

- IZ1312 Z 22 - Z11 IZ 23 12 - IZ 12 12 Z 33]

= 2Z,3Z23 - 2Z, 2Z3 = 2(Z,3 Z23 - Z, 2Z3) = -2det(Z 1 2)

where Z21 is the minor of Zi*2 = Z2,. Similarly,

D(Z 13) det Z = 2Z 12 Z23 - 2ZI3 Z22 = 2 det(Z 13 )
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and

D(Z 23 ) det Z = 2Z*2 Z 3 -2Z 1 I Z 23 = -2 det 2 23

Finally,

D(Z11) det Z = D(Z,1) det Z = 0

Putting this all together, we get

0 - det Z 12  det 21 3

D(Z) det Z = 2 -det Z 12  0 - det 2 23

det Z 13  - det Z 23  0

0 (-1)1+2 det2 1 2 (-1)1+3 det Z13

-2 (1) 1 +2 det Z12  0 (-1)2+3 det Z 23

(-1)1+3 det Z 13 (--1)2+3 det Z 23  0

0 (-1)1+2 detZ12 (-1)1 +3detZ13

= 2 (-1)1+ 2 det 2 12  0 (-1) 2+3 det Z 23

(-1)'+3 det 2 13 (-1)2+3det Z2 3  0

Recall that

T

(-1)1+1 det Z1 (-1)1+2 det Z12 (-1)I+3 det Z13
1

Z-1 d (-1)2+1 det Z 21 (-1)2+2 det Z 22 (-1)2+3 det Z 23

deteZ
(1)3+ 1det Z31 (--1)3+2 det Z32 (-1)3+3 det Z33
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D(Z) detZ =

(-1)1 +1 detZ 11  0 0

2Z-1 [det ZI - 2 0 (1)2+2 det Z 22  0

0 0 (-1)3+3 det Z33

Thus

=2 [Z-'[det ZJ - diag (det Z 11, det Z 22 , det Z33)]

In general, for Z = ZH E M,(C), we have

D(Z) det(Z) = 2[Z-' det(Z) - diag(det Zn,. ,det Z n)] (B.38)

B.3.3 Differential Functions of Determinants

These results were supplied by me. I have not diligently searched the literature

for them. They are simple enough to have been done by any senior in engi-

neering after brief exposure to the principles of differentiation of a complex

variable.

Proposition 22 Let A E CnXU, B E CnXmI, T E Cm×n. Then

D(T)det(A - iBT) = 0

m
Proof. The (ik)"h element of the matrix (A - iBT) is (Aik - i E Bi1TLk)ik.

1=1

Every element of column k of (A - iBT) contains Tjk. Expand det(A - iBT)

down column k. Let Z = A - iBT and let Zpk be the minor of element Zpk
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obtained by removing row p and column k from Z. Then

nM

det(Z) = -(--)p+k(Apk - i E BpITuk) det Zpk

p= 1  1=1

The (jk)th element of D(T) det(A - iBT) is D(Tjk) det Z = 0. Thus

D(T)det(A- iBT) = 0

Theorem 17 Let A, B, TH = T E Clxn. Then

D(T) det(A - iBT) = i[A(Z-TB) - 2Z-T B] det(Z)

where Z = A - iBT and A(A) is a diagonal matrix of the diagonal elements

of A. Further,

D(T) det(I - iBT) = i[A(B) - 2B]

T=O

Proof. We know from previous examples that

n Mr

det(Z) = det(A - iBT) = -(-l)P+k(Apk - i E BplTlk) det( Zpk)
p=l 1=1

where ZPk is the minor of Z = A-iBT formed by deleting row p and column k.

We now have the additional relationship that TIk = Tk,. We know D(Tik)Tjk =

0 and D(Tjk)T.•k = 2 for j 0 k. Also,

D(Tjj)Tjj = D(T1j) Re(Tjj) = 1
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since T11 E R. To locate nonzero entries of D(T) det(Z) we rewrite det(Z) as

det(Z) = E(_1)p+k(Apk EiZBpTk,~)det( Zpk)
P==1

Then
n

D(Tk3 ) det(Z) E (l1)P+k(-i2Bp ) det( ZPk)
P=1

for k 34 j, and

D(Tkk) det(Z) = (_l1)p+k( -iBpk) det( Zpk)

Then alle zusammen, D(T) det(Z)-

iE (-1)p+1 Bp1 det(ZP1 ) -i Z(-1)P+'2Bpn det(ZP')
P=1  p= 1

-i >j(-1)P+22Bpldet(ZP2 ) _Z'E ~(_1)p+ 22Bpn det(Zp2)

_in n
Ei (_1)p+n 2Bpj det( Zpn) Z. -i~ 1)p+n Bpn det(Zpn)

P=1  p1j

Let Bp = (Bpl, Bp2~, Rpm) be row p of matrix B. Note that

(-1)P+1 Bpl det(ZPI) ... (-1)P+1 Bpn det(ZP1 )

n (_1)p+ 2Bpl det(ZP2 ) ... (-1)p+2 Bpn det( Zp2 )
F=E

p= 1

Bp



341

(-1)1+1 det(Z11 ) ..- (-1)"+'det(Znl) B,

= [det(Z)]Z- T B

(-1)1+- det( Zln) .. (-1)n+n det( Zn) •Bn

Substituting into our problem, we obtain

D(T)[det(Z)] = -i2Z-T B det(Z) + iA[Z-T B det(Z)]

where A(A) is the diagonal matrix whose elements are on the main diagonal

of matrix A. Scalars commute, so we have

D(T)[det(Z)] = i[A(Z-T B) - 2Z-T B] det(Z)

Expanded, we obtain

D(T) det(A - iBT) = i[AI{(A - iBT)-TB) - 2(A - iBT)-TB]

When this is evaluated at T = 0, we obtain

D(T)[det(Z)]IT=O = i[A(A-T B) - 2A-T B]

When we further simplify to A = I, then

D(T) det(I - iBT) = i[A((B) - 2B]

T=O

B.4 Complex Characteristic Functions

The discussion of characteristic functions of complex variables is almost non-

existent in the literature. C. R. Rao [218] provided a definition which is the
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starting basis for the following study. The remainder of the results in this sec-

tion were developed with Ferlez [82]. Acknowledgment of his contribution does

not constitute his certification that he has reviewed and approved the enclosed

material. Although we developed different results, the work contained here is

greatly extended beyond its original bounds and more thoroughly thought

out because of the wonderful semester of discussions with Ferlez. Thus, even

though I am responsible for these results, they would not have been developed

without his active insights. If these results stand the test of close examination,

then he should receive much of the positive credit.

In the case of real variables, the theory of characteristic functions has been

cast as an application of the Fourier transform. Properties of the Fourier

transform have been extensively developed and widely used, particularly by

scientists and engineers working with time series data. A major attraction of

characteristic functions to statistics is that they provide a conceptually simple

way to evaluate the expected value of some linear combinations of random

variables. In distribution theory, the Fourier transform provides a useful tool

for obtaining nice results via its properties. A first exposure to this application

in statistics often is in the proof of the Central Limit Theorem, which yields

results more general than obtainable when restricting attention to moment

generating functions.

Characteristic functions are important to the development of the proper-
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ties of the distributions needed as background for the eventual development

of the joint density of the sample eigenvalues of the complex Wishart matrix.

The motivation for researching various forms of a characteristic function had

its genesis in examining the existence of the derivative when applied to the

characteristic function for the complex Wishart distribution. In particular,

this examination included applying principles used in deriving the Cauchy-

Riemann equations. The case will arise when examining moments of the com-

plex Wishart distribution that blind application of the formula referred to as

the "characteristic function" does not yield (at first blush) what is desired.

There are two reasons for this. One reason is that the usually cited formula is

not really the characteristic function of the complex Wishart distribution, but

rather the formula is the characteristic function of another complex matrix

variable that is algebraically related to the complex Wishart random variable.

The second reason is that the derivative with respect to the transform variable

matrix of the function does not exist. It was this discovery that lead to un-

derstanding the need for developing the theory of the characteristic function

of complex matrix variables.

In the case of complex variables, the choices of functions to call a "char-

acteristic function" widens. The unwary engineer (or theoretician) may apply

one concept of a characteristic function to a result derived by another worker

using a different concept. These different concepts appear similar, but they
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have different properties. After worrying for a while over which version was

the "correct" version, it became apparent that merely searching for a definition

from an authority was not as instructive as attempting to construct families

of functions and observing the resulting properties. After all, it is the set of

properties of the characteristic function that make characteristic functions im-

portant, not the fact that someone dreamed up a formula with a fancy name

that also has applications in other disciplines. The material that follows is the

record of investigations. By reading it, you should be able to develop an idea

of the different kinds of issues that need to be considered.

Some properties I prefer to have in a characteristic function for complex

variables follow:

1. When reduced to the real variables case, the complex variable character-

istic function should behave as the real variable characteristic function.

2. The complex characteristic function should be useful for computing ex-

pected values of moments.

3. The complex characteristic function should be useful in deriving charac-

teristic functions of linear and affine functions of complex random vari-

ables.

4. It should be fairly easy to determine the existence of the desired opera-

tions, such as a derivative (if used) applied to characteristic functions to
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compute moments

The following forms are the starting points for the discussion to follow.

,b,(T) = E{exp(iRe[tr(THZ)])}

%I'(T) = E{exp(itr(T T Z))}

Q•(T) = E{exp(itr(THZ))}

v,(T) = E{exp(ig(<T,Z>))}

B.4.1 Definition of Characteristic Function of a Com-

plex Random Matrix

This study begins with a derivation of the characteristic function of a complex

random variable, as presented by C. R. Rao.

Definition 5 Let z be a complex vector random variable, and let t be any

complex vector of the same dimension as z. Then the characteristic function

is given by

(Dz(t) = £{exp(i Re[tr(tHz)])}

To see this, let t = tl + it 2 and z = x + iy. Then

tHz = (tT - itT)(x + iy) = tTx + tTy + i(tTy - tTx)

Thus Re[tHzI = tTx + try. Consider ST = (tT, tT), and WT = (xT, yT) where

s,w E R 2. Then sTw = tTx + tTy and

4w(s) = £{exp[i(sTw)]I = f{exp[i(tTx + tT2y)]}
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= £{exp(i Re[tr(tHz)])} = 4z(t)

Note that Re(tHz) batisfies the properties of an inner product.

B.4.2 Basic Properties of Characteristic Functions

Some of the work in this section was motivated by Arnold's discussion [31]

of moment generating functions for the case of multivariate distributions of

real-valued matrices. His presentation is in his equations 1 i'.4 through 17.9.

Except as otherwise noted, I have supplied all the work in this section.

Let the characteristic function of a matrix complex random variable be

-tz(T) = £{exp(iRe[tr(THZ)])} (B.39)

where T = (tii) is a matrix that has the same dimensions as Zm.n. Then
n mn

4Dz(T) = £{exp(i Re[Z E tjkzjkI)I (B.40)
k=1 j=1

where

t;1  t 1  .. '. t 1l Z11 Z12 Zln

t1 2  t22 ... tm2 Z2 1  Z2 2  ... Z2n
tr

t;,, t2* .. tm*, zmI Zmn2 ... Zmn

m m m n m

= •t, + E t; 2 zj2 + ... + nZ = = EZt ;kzjk (B.41)
j=- j=- j=1 k---1j

Proposition 23 Let a E C, and let W = aZ. Then

40az(T) = £{exp(iRe[tr(THaZ)I)} = 4Dz(a*T) (B.42)
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Theorem 18 Let A E Cmxn, B E Cpxr, C E Crnxr, Ymxr =AZB + C, and

Z E Cn<p . Then

OIy(T) = ýAZB+C(T) = exp(Z Re[tr(THC)])Oz(AHTB H)

Proof. The proof consists merely of following the definition and applying

the algebra.

4Oy(T) = OAZB+C(T) = £{exp(i Re[tr(TH{AZB + C})])}

= £exp(i Re[tr(T HAZB) + tr(THC)])

=exp(i Re[tr(T HC)] )9exp(i Re[tr(T H AZB)]) I

= exp(i Re[tr(THC)])Sjexp(I Re[tr(BTHAZ)])1

=exp(i Re[tr(THQC])Efexp(i Re[tr((A HTB H)HZ)])1

exp(i Re[tr(T H)] )Oz(A HTBH) = ýDAzB+C(T)

0

A useful special application of this property is important enough to sepa-

rately identify.

Corollary 5 Let Z E Cnxm have characteristic function, (z(T). Suppose you

w~ant the characteristic function of a wecighted surn y of elements of Z. Let

A* E C'xm specify the desired weights. Then (Pt() = 4)z(At) w~here t is a

scalar.
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Proof. An arbitrary sum of weighted elements of Z is given by y =

E E A*kjZkj. By lemma 29, y = tr(AHZ). Since y is a scalar, its charac-
j=1 k=1

teristic function is given by

40,,(t) = ,{ exp(i Re[t*y])} = E{ exp(i Re[t* tr(AHZ)])}

= £{exp(i Re[tr(t*AHZ)])}

= E{exp(iRe[tr(At)HZ])I = Oz(At)

Note that matrix A is the complex conjugate of the desired set of weights.

This was motivated by Goodman's theorem (p.169) [92] for 4Itrz(t). To

get the characteristic function of Zij, just set element Aij = 1 and all other

elements of A to zero. To get the characteristic function of the sum of the kth

.ow of Z, set the kth row of A to (1, 1,-.-, 1) and all other elements of A to

zero.

Proposition 24 Let Z = (Z1, Z 2) where Z1 is n x pi. Similarly, let T =

(T1 , T2) where T1 is n x pl. Then

Iz(TI, O) = 4z, (TO)

Proof.

4Dz(T 1 , O) = E{exp(i Re[tr(Ti, o)H(ZI, Z2)])} (B.43)

= £exp(i Re[tr ( IH (ZI, Z2)1)1 = 9{exp(I Re[tr (I TZ, T1HIZ2 D)
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= E{exp(i Re[tr (T1 z1)])} = (T1) (B.44)

0

Proposition 25 Similarly, let Y = and S = where Y1 and
Y2 S2

S, are ni x p. Then

(Ity = DIy, (SO)

0

Proof.

(DY =Ef{exp(i Re[tr (B.45)

0 0 Y2

=E{exp(iRe[tr S o 0 ( )}
Y"2

= £{exp(i Re[tr(S Y, )])} = 4Y1 (S1) (B.46)

Proposition 26 Let Z = (ZI,Z 2), Z, and Z2 be independent, and T =

(TI, T2). Then

Itz(T) = 4Dz(T,,O)Oz(O, T2)

Proof.

Iz(T) = £{exp(i Re[tr(T1 , T2 )H(Z,, Z 2)])} (B.47)

= £{exp(iReftr (T H ) (Z 1 , Z 2 )1)}
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E{exp(i Re[tr TI'ffZ1  TiffZ 2

T2
1HZI T2 Z2 )

= £exp(i Re[tr (T111Z1) + tr (T2"Z2)I)}

= £exp(i Re[tr (TIHzi)I) exp(i Re[tr (T2HZ 2)])1

If Z, and Z2 are independent, then this equals

E{exp(i Re[tr (T1HZ,))I)}Cexp(i* Re[tr (T2HZ 2)])}

4% 4z(T 1)4Oz 2(T2) = DIz (TI, 0) 4iz(0, T2) (B.48)

0

Proposition 27 Similarly, let Y = Y , ' and Y2 are independent, and

= S ) Then

Proof.

4Dy (S) = E{exp(i Re[tr ( 11(B.49)
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- E{exp(i Re[tr (S 1 - 2)])

f £{exp(i Re[tr (SI'Y 1)]) exp(i Re[tr (SHY 2)])}

If Y1 and Y2 are independent, then

= £{exp(i Re[tr (Si"Yi)])}S{exp(i Re[tr (s2HY 2)])}-ty,, (D 0) B.0
= (y,(SO) 2y (S2) = ty, •y( (B.50)

0 S2

0

Proposition 28 The characteristic function of the transpose of the random

variable is

*tzr(T) = 4z(TT)

Proof.

'IZT(T) = ${exp(i Re[tr(THZT)])}

= £{exp(i Re[tr(ZT*)T ])} = £{exp(i Re[tr(ZT*)])}

since tr AT = tr A, and this equals

(DzT(T) = E{exp(iRe[tr(T*Z)])} = 4z(Tr) (B.51)

0

Proposition 29 Similarly, the characteristic function of the Hermitian trans-

pose of the random variable is

4tz-(T) = 4z.(T )
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Proof.

4DzH(T) = 9{exp(i Re[tr(THZH)])} = S{exp(i Re[tr(Z*T* )T ])1

= £exp(i Re[tr(Z*T*)I)} E {exp(i Reltr(T*Z*)])1 = 4tz. (T T) (B.52)

0

Discussion. Note that in general there is no simple connection between

ýDz(T) and -Oz.(T). Let Z = A + iB in the following discussion.

obz(T) = E{exp(i Re[tr(THZ)])} = £{exp(i Re[tr([A + iBIH[C + ID])])}

= Ef{exp(i Re[tr([A - iB]T[C + i*D])])}I

- £exp(i Re[tr(A TC + B TD - 'B TO + IA TD)])1

-f ~exp(i Re[tr(A TC + B TD)])}

and

4bz. (T) = Ef{exp (I Re[tr(T HZ*)])}I = E{exp(i Re[tr([A + IBIH[C + iD]*)])}I

E £exp(i Re [tr( [A - iB]T[C - iD])]))I

-f {exp(i Re~tr(AC - BTD - 'BT - AD))

= E{exp(I Re[tr(A T C B BTD)I)1I

As an additional curiosity,

4Dý(T) = E{exp(i* Reltr(A T C + B TD)])11 E I{exp (-i1 Re[tr(A T C + B TD)])}I
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If Re(Z) and Im(Z) are independent, then

4Zz(T) = 4ORz(T)4'1nz(T) (B.53)

= E{exp(i Re[tr(AT C)]) }${exp(i Re[tr(BT D)]) }

4bz.(T) = O.pez(T)--Imz(T) = hRez(T)OIm(-z)(T)

E f {exp (i Re[tr(ATC)])} C {exp (i Re[tr(-BTD)])} I-= tRez(T)@ýOZ(T)

The characteristic function of the trace of a random square matrix can

be obtained from the characteristic function of the random square matrix by

judicious choice of the transform variable.

Theorem 19 Let t E C and Z E Cnxn. Then

'OtrZ(t) = ¢Z(t~n)

This is stated in Goodman (p. 169) [92] without proof.

Proof.

,trz(t) = E{exp(i Re[tr(t*(tr Z))])} = E{exp(i Re[tr(t*Z)])}

= F{exp(i Re[tr(t*IZ)])} = E{exp(i Re[tr((tI)HZ)])} = 4Dz(tIn)

0

Theorem 20 Likewise, let a E Cn, t E C, and Z E Cnxn. Then

4DaHZa(t) = ibz(taall)
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Proof.

'.aHZ.(t) = E{exp(i Re[tr(t*aHZa)])} = ,{exp(i Re[tr(at*aHZ)])}

= E{exp(i Re[tr((ataH)HZ)])} = 40z(ata H) = Oz(taaH)

since t is a scalar.

B.4.3 Just a Moment

Except for the statement of the distribution and characteristic function of the

Cauchy distribution, this section was supplied by me. I have not searched the

literature diligently for these results.

Here we examine the properties of the characteristic function as a moment

generating function. This study is the beginning of a discovery of a few inter-

esting surprises. We begin with a result that is standard when dealing with

real variables to see where it will lead us.

Let Zmx. be a complex matrix random variable with characteristic function

,tz(T) = C{exp(i Re[tr(THZ)])}. We first want to find the £{Z} solution.

Recall that

m n mn n

6z(T) = ,{exp(i Re[-Z E T; Zk)} = 9{exp(i[E Z(TRjkZRjk+TIjkZjk)])}
j=l k=1 j=l k=1
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where T = TR + iTj and Z = ZR + iZj. Then

0a-nq Dz( T)

TRpqT=O

m n

=. iZRq qexp(i[E j:(TRjkZRjk + TIjkZIjk)])= i{ZRpq} (B-54)
j=1 k=1

T=0O

since expectation is a linear operator. We similarly take the partial derivative

with respect to Tjpq. Then

-{Zpq} - £{ZRpq + iZjpq}

- 0 z(T) + Z(T)
i OTRpq +-jT •zT

T=0 T=0

a a]
=(-i) ± i TIpq I

T=O

Note that

- _ - )f(Tpq)O'Tpq 0iTp WTlpq)

by the conditions leading to the Cauchy-Riemann equations. Thus the opera-

tor we want to use to find £{Zpq} is not the complex derivative a-- z(T).
apq
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Let us use the operator we established by definition 4, given here by

D(T7 k) = + aTIk

Then

£{Z k} = (-i)D(0jk)4z(r)

T=O

£{Zjk} exists when D(Tjk)4z(T) exists. Define

(D(T,,) D(T,2) .. D(T,.)

D(T) D(T21) D(T 22) ... D(T2.)

D(Tmi) D(Tm2) D(Tmn)

Then

£{Z} = (-i)D(T)IOz(T)

T=0

This is valid for arbitrary m and n. Let DT(T) be the transpose of the operator

matrix D(T), and let DH(T) be the Hermitian transpose.

What about higher moments? It is instructive to examine this. My intu-

ition failed me. The wrong solution is to work with forms like

DT (T)D(T) 4z(T)

T=0
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D'(T),Oz(T)

T=O

DH(T)D(T)'z(T)

T=O

etc. The right solution it to work with forms like

D(TTT)-z(T)

T=O

D(THT)Dz(T)

T=O

etc.

Although D(T)D(T)Oz(T) is not what we want for computing expected

values of moments like E{ Z2}, it might be something to use in another context.

Do not throw it away; just put it into your tool box. Recall that Oz(T)

is a scalar valued function. D(T)Oz(T) is a matrix with the dimensions of

T E Cm"'. If we now look at D(Tjk) of that matrix, we get a matrix of the

same size. When we look at D(T)D(T)Oz(T) we get a matrix that lives in
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Cm2 Xn2 . Likewise, DT(T)D(T)4Dz(T) lives in Cmnln m. Elements of

D 2 (T)-Iz(T) = D(T)D(T)Ibz(T)

look like the following.

D(T1 1)D(T) D(T12 )D(T) ... D(Tln)D(T)

D(T2,)D(T) D(T22 )D(T) ... D(T2.)D(T) (zT

D(Tmi )D(T) D(Tm2 )D(T) ... D(Tmn)D(T)

D(T11 )D(T1 1 ) ... D(T1 1)D(Tln) ... D(T1 .)D(Tln)

D(T1 l)D(T2 ,) ... D(T1 1)D(T2 n) .. D(Tln)D(T2n)

D(Tii)D(Tmi) .. D(Tii)D(Tmn) .. D(Tln)D(Tmn,)

- D(T2 ,)D(T11 ) .. D(T2 ,)D(Tln) .. D(T2n)D(Tln) 'Dz(T)

D(T2 i)D(Tmi) .. D(T2i)D(Tmn) .. D(T2n)D(Tmn),

D(Tmi)D(Tmi) .. D(Tmi,)D(Tmn) .. D(Tmn)D(Tmn)
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When this is evaluated at T = 0, we get:

EJZ2 } *.. {lzn.. ejZI~jFZ1
2 )

11Z 2 ZIn

This might be more useful than the result we are seeking.

If you compute

D(T)D(T)4,z(T) - [D(T),h(T)] 0 [D(T)4,z(T)]

you obtain something that looks like a simple generalization of a covariance

matrix. It is

E{z~11Z211 - Ef£{-6Z1 .. EZ~nZ2nj - j1-FZn

Ef Z21 Z11I - EfZ1JJZ1I..EZn~j- E{Z2njl{ZInl

- [E{Zmi 1 [-6[fZmn1]
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cov(Z,,,Z,1 ) ... cov(Z,1 ,Z,,)

COV(ZI1,, Z2) ... COV(ZIn, Z2n)

cov(ZJJ,,z"J) ... cov(Z•,,z, Z")

cov(Z 21,,Z,) ... cov(Z 2 ,ZI)

cov(Zm,,1,Z ) ... cov(Zmn,Zm.)

= -- cov(Z, Z) = -[Ef{Z ® Z} -- {Z} ® E{Z}].

Perhaps this is what we should want, even iaough it is not the standard con-

struct we usually seek. The statistician will object to my using cov(ZII, Z11 )

rather than var(Z11 ), but I wanted to make the point of the pattern that

developed.

What I set out to find was the expected value of functions like ZTZ or

ZHZ. Each element of the resulting matrix Y - ZTZ is a linear combination

of products of elements of Z. This is more complicated than our previous

situation. Note that

ZI1 Z21  "" ZmI Z11  Z 12  - Zln

= Z12 Z22  Zm2 Z 21  Z22 ... Z2.

Z,, "Z2n ". Zm. Z40 Zm2 ... Zm.

Element (j, k) is given by Zij Zik . From the work on the first moment
(=M1 )k
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of Z we recall

Mr n

D(T)4Dz(T) = i.{Zexp(i'[]j Z(TRjkZRjk + TIkZIjk)])J
j=1 k=1

Element (p, q) is given by

m n

D(Tpq)4,z(T) = i I{ Zpq exp(i[2'1 E (TRjkZRjk + TIjkZIjk)])}
j=1 k=1

If we now apply D(Tr,) to this result, we get

m n

D(Tr.)D(Tpq)hz(T) = i 2E { Z,,Zpq exp(i[- [ --:(TRjkZRjk + TIjkZIjk)])}
j=1 k=1

Evaluating this at T = 0 gives us

D(T-.)D(Tpq)4'z(T) = -- {ZrZpq}

T=O

To obtain the expected value of element (s, q) of Y = ZTZ, I must find

m mr m

g{J ZiZiq} = E {ZisZiq} = - E D(Ti.,)D(Tiq)tz(T)
i=1 i=1 i=1

T=0

To make the next step easy, define

D.*(T.Tpq) def D(Tr,)D(Tpq)

Note that this definition does not naturally follow from D(Tr,), but it will turn

out to be a useful definition. The close critical reader would observe

D(TrTpq) = D[Re(T,,Tpq) + i Im(T,.Tpq)]
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where

Re(Tra.Tpq) = TRrsTRpq - TisTipq

and

IM(Tra.Tpq) = TIrsTRpq + TRrsTIpq

and thus

D(TTST 1,9 =[Re(T,,Tpq) + o~m(TrsTpqj

This is not what I want. Using the proposed definition, then £{ ZTZI-

m ~ m

m m

2=1 1 'Iz(T)

T=0mm m

D(T1 1 ) D(T21) .. D(Tmi)

D(T12) D(T22) .. D(Tm2 )
x

D(T1 .) D(T2.) .. D(Tmn)

D(T2 1 ) D(T12) .. D(T2 .)

x D(2)DT2)..D(~)-z(T)

T 0
D(Tmi) D(Tm2) .. D(Tmn)



363

We have already seen that this is not

-DT(T)D(T)I•z(T)

T=O

This is why we need the suggested definition. When used, we get £{zTz} =

Sm m

D.(Ti1Ti1) D.(TiT,2) .. D.(TjTj.)I
i=t=1 i=

D.(T,2T,1) 1_: D.(T,2T,2) . _.. D.(Ti2T,.)
ii= i==1 lz(T)

T=0
= D.(T,,.Tjj):, D.(Ti.Ti2) ... E D.(T,,,T,)

= -D.(TTT)tz(T)

T=O

Extrapolating this concept,

E{ZHZ} = -D.(THT)lz(T)

T=O

when these exist. When Z is a square matrix, then

E{Z'l = -D.(T 2 )tz(T)

T=0



364

Further,

£{Zk} = (-i)kD.(Tk)Iz(T)

T=O

Example 1 Expectation of ZT AZ

Let A = AH be a matrix of complex constants, and let Z be a complex

random matrix variable with characteristic function Oz(T). Then A = BHB

and ZHAZ = yHy where Y = BZ.

£{ZHAZ} = g(yHy} = _D(THT)Iy(T)

T=O

= -D(THT)4Bz(T) = -D(THT)4z(BHT)

T=O T=O

Similarly, ZAZH = XXH where X = ZC and A = CC-'. Then

£{ZAZH} = £{XXH} = -D(TTH)Ox(T)

T=O

= -D(TTH)4ýzc(T) = -D(TTH)4z(TCH)

T=O T=O
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In a similar manner, for AT = A = BTB > 0 then

£{ZTAZ} = -D(TTT)4Dz(BHT)

T=0

Notice that it is still the Hermitian transpose of the square root of A that

appears as a factor in the transform variable matrix even though we are dealing

with the characteristic function of a symmetric matrix variable. As review,

this is a result of theorem 18.

Likewise, for AT = A = CCT > 0 then

£{ZAZT} = -D(TTT)•z(TCH)

T=0

Note that this general technique is not applicable for computing £{ZAZ}

for A > 0 with no other restrictions on Z and A. We observe that A > 0 implies

there is a "square root" decomposition A = CC. Then ZAZ = ZCCZ = XY

where X = ZC and Y = CZ. There is not a simple relation on 4z(T) that

yields £{XY} with this approach.

If Z=ZH and A= AH then

,{ZAZ} = E{ZAZH} = E{Z" AZ}

which were given above.
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Example 2 Cauchy Distribution

The Cauchy distribution provides a simple example of a distribution that

does not have a "well-defined" mean. Here, it is an example that existence of a

characteristic function does not imply existence of moments. The probability

density function of the Cauchy distribution is given by

A)=I ( 1 ) dx, X ER

= 1 l+ (x- 0)2

Its characteristic function is

Ser (l + (x-0)) dx, t ER

Perform the change of variables y = x - 0. Then x - y + 0 and dx = dy.

,Px(t) = eit(Y+0) 1y 't 1t

1r ( dy = 0itO e +t y dy

In order to apply Gradshteyn and Ryshik equation (3.354.5) [94], let z = -y.

Then y = -z and dy = -dz. Then

x(t) _1eitOe itz ( - 2 )dz = -eito e-itz dz"Ir + Z2o 1 + Z2

By equation (3.354.5), this is

x(t)= l e" -e -ji"j = et - il
7r 1

When moments exist, they are found by differentiating the characteristic func-

tion and evaluating at t = 0.

d %( = = itoitOIt0 -dtl)
dtdt
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Note that

-1, < 0

d
Tt Itl 1 t>0

undefined, t = 0

Thus

d
dt

T=O

is undefined, and E{x} does not exist.

B.4.4 Uncharacteristic Functions for a Moment

All of the results in this section were supplied by me. I have not diligently

searched the literature for these results.

Uncharacteristic Function A

Define function T z(T) to be a function that maps (Z, T) F-+ C where Z, T E

Cmxn are matrices and all elements of T are algebraically independent. Let

Z be a matrix complex random variable with distribution function dF(Z).

Finally, let

= C{exp(i tr(TTZ)]I = 1z exp[i tr(TTZ)]dF(Z)
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When we expand the definition, we get

m n

'Iz(T) = £{exp[iZ F, TjkZjkj}

j=1 k=1

If we take the derivative we obtain

d dmn
dTglz(T) = dT exp[iEETjkZjk]}

pq pq j=l k=1

d n

- exp[i 1 TZkZjkl}
pq j=1 k=1

where we assumed it is legal to interchange the derivative and the integral.

Applying the derivative we obtain

d m n

dTpf---z(T) = E{iZpq exp[i E ETjkZjk]}
j=1 k=1

When we evaluate this expression at T = 0, then

d
-{ z(T) = iE{zpq}

dTp q

T=O0

or solving for the first moment,

d

{T = 0

Extending this to the derivative with respect to a matrix, we obtain

-a Tz(T) =To=iejz}
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or

E{Z} = -i 49 z(T)
ý-T IT=o

This is a property we seek in usual work with characteristic functions, in that

here we are using a true derivative rather than a special differential operator.

Now, let Z) T E M,,(C). We need the property that

k

Zk~ ~ ~ i =1_.__

makes sense. Then we obtain the form similar to the real variables case.

gjJj= (_i)k ( d)k zT

dT=

where

(d)k=(d)(d)(d)

k times

Note that tr(TTZ) is not an inner product.

tr(TTZ) = Z Z lkZ~k Itr(ZHT*)]*

which violates the first property of an inner product which requires

< T, Z>=:< Z, T>*
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Uncharacteristic Function B

Define flz(T): (Z,T) E C m xn -- C by Qz(T) = E{exp[itr(T HZ)]}. Then we

get

mn

flz(T) = E{exp[iy E TjkZjk]}
j=1 k=1

Recall that d- Tjk does not exist anywhere. To obtain our moments we must

look at d and its matrix extension (T. Then we get

69 m n

OT;- z(T) = EliZp, exp[i 2 E T.7kZjk] }
pq j=1 k=1

and

a
a~pfl z(T) ,Izl

~~~ = 0 EzqpTq

T=O

For X E C, we note that X = 0 implies X* = 0. We thus get the nearly

familiar result

£{Zk} (_i~k z(T)

T=0

S)z(T) may have some nice properties because tr(THZ) defines an inner prod-

uct < T, Z > . We verify this.

1.

mn n n n

< T,Z >= ZZUZjk Z<~i Z,T >*
j=1 k=1 =k=
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2.

in n m n m n

< T, Z + X >= I T*k(Zik + XJk)= ZTAkZJk + ± E T*kXj k
j=1 k=1 j=1 k=1 j=1 k=1

=< T,Z > + < T,X >

where also X E Cmn.

3.
~n

< T, aZ >= Z Tj~aZ~k a < T, Z >
j=1 k=1

4.
mn mn

T,T >=ZZ TIkTjk =Z ITjkI 2 > 0

j=1 k=1 j=1 k=1

for all T E CmXn.

5.

< T,T >= 0

if and only if T = 0.

Uncharacteristic Function C

Let T, Y, Z E Cm~n and a E C. Let g(Z) be a linear function. Thus

g(Y + oA) = g(Y) + ag(Z)

Let < T, Z > be an inner product on the set of matrices in Cmxn. Define

vz(T) = E{expfig(< T,Z >)]}
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Let us consider the properties of vz(T).

VCz(T) = -{exp[ig(< T, cZ >)]} = £{exp[ig(a < T,Z >)]}

= £{exp[iag(< T,Z >)]}

Also

L/aZ(T) = ${exp[ig(< *T, Z >)]} = vz(aT)

Let A E Cm x", B E Cp"T , C E C-xr, Y = AZB + C, T E Cmxr, and

Z E C"P. Then

vy(T) = VAZB+C(T) = ({exp[ig(< T, AZB + C >)]}

= £{exp[ig(< T, AZB> + < T,C >)]}

= £{exp[ig(< T, AZB >) + g(< T, C >)]}

= ,{exp[ig(< T, AZB >)] exp[ig(< T,C >)I}

Since C is a matrix of constants, we can write this as

E{exp[ig(< T, AZB >)]} exp[ig(< T,C >)]

When AH is the adjoint of A we get

£{exp[ig(< AHT, ZB >)]} exp[ig(< T,C >)]

= vzB(A T)exp[ig(< T,C >))

When

g(< X, Y >) = tr(X "I")
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for conformable XH and Y then

vy (T) = £{exp[i tr(BTHAZ)I} exp[i tr(THC)] = vz(AHTB) exp[i tr(T HC)]

which we established earlier in a similar form for g(< X, Y >) = Re[tr(XHy)].

Partition Z = (Z1 , Z2) where Z1 is n x pl. Similarly, let T = (T1, T2) where

T, is n x pl. Then

vz(T 1,0) = £{exp[ig(< T,Z >)]} = C{exp[ig(< (TI,O),(Z,,Z2) >)]}

Let <X, Y >= h(XHY). Then

vz(T,0) = C{exp[ig(h{ TH ) ,(ZI,Z 2 )})]}

0)

= {exp[ig(h { ZI T1
11Z2 11

1 0 0

If h(X) is a function of only square submatrices on the main diagonal of X

then we have

vz(TI,0) = E{exp[ig(h Z 0 A)]}

0 0

If h(X) = tr(X) then vz(T 1,0)=

E{exp[ig(tr(TM Zi))]} = £{exp[ig(< T1,Z, >)]I = vz,(TI)

Now partition Z = and T = where Z1 and T1 are nj x p,
Z2 T2
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Then

Vz~~ Ejexp~z(

Let < X, Y >= h(XHY). Then we have

VZ (, Ej = exp[ig(h[(TiH,O0), (, )])]1 Elexp[Ig(h(T['ffZI))}

=Cexp [ig (< T1, Z, >)]} =z (

Let Z = (ZI, Z2) and T = (TI, T2). Then

,vz(T) = Ef exp[i'g(< TZ >)]} = Ef{exp[ig(h[(TI, T 2 )H(Zl, Z 2 )])]}

=Cfexp~ig(h i TLZ 1 T1H Z2 M

T2Z1 T2 Z2 )

where < T, Z >= h(THZ). When h is a function of only square submatrices

on the main diagonal, this is

vz(T) = 9{exp[ig(h 1)1Z1

0 T2HZ 2 )

When h(X) = tr(X) then

vz(T) = E{exp[ig(tr(T1
1 'Zi) + tr(T2HZ 2 ))]}

= Efexp~ig(tr(T1 11 Z1 )) + ig(tr(T2
1 1Z2))Il

Ef {exp[Ig(tr(THZI ))J exp[ig(tr(T2"Z 2))] }
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When Z, and Z 2 are independent then

vz(T) El£exp[ig(tr(T1 1 Z1 ))] }Efexpfzig(tr(T 2HZ 2))]}

=Z vz(TO )Z- 2 (T2) = VZ (TI,0) VZ(0, T2)

Similarly, for Z = ,T ( ),and Z, independent of Z2 we

obtain

i'Z(T) =vz,(T1 )vz 2(T2) = vz V

Cmxn . Then

V-ZT(T) = £{exp[ig(< T, ZT >]

When < X, Y >= h(tr(XHY)) then

V-ZT (T) = Efexp~ig(h[tr(TH ZT)])] I = Ef exp[z'g(h[tr(ZT*)T ])1

= E{exp[ig(h[tr(ZT*)])]}

since tr XT = tr X.

VZT(T) = E{exp[Ig(h[tr(T*Z)])]} = vz(T T)

Similarly,

VzH(T) = E{exp[ig(h[tr(TH Z1 )])] } = -£{exp[ig(h[tr(Z*T*)T ])]}

= £exp[ig(h[tr(T*Z*)])]1 = vz.(T T)
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Let Z=X+iY and T= R+iS. Then

vz(T) = &{exp[ig(< R + iS,X + iY >)]}

= E{exp[ig(< R + iS,X > +i < R + iS, Y >)]}

= C{exp[ig(< R,X > -i < S,X > +i < R,Y > + < S,Y >)]}

= E{exp[i{g(< R, X >) + g(< S,Y >)} + {g(< S, X >) - g(< R,Y >)}Y}

Similarly,

vz.(T) = Ef{exp[ig(< R + iS,X - iY >)]}

= £{exp[i{g(< R,X >) -g(< S,Y >)}

+{g(< R,Y >) +g(< S,X >)}X}

and

v*(T) = £{exp[-i{g(< R,X >) + g(< S,Y >)}

+{g(< S,X >) -g(< R,Y >)}Y}

If Re(Z) and Im(Z) are independent, then

vz(T) = vx(T)viy(T)

and

vz.(T) = vx(T)v(-)y(T) = vx(T)vy%(iT)
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Appendix C

COMPLEX CHANGE OF VARIABLES

C.1 Introduction to Changing Variables for

the Complex Case

The reason for the existence of this chapter is to develop Lhos- Jacobians

needed for changes of complex variables required for distributional results of

this thesis. The theory for change of variables has long been worked out, but

the specific forms required for application for multivariate statistics have not

been systematically worked out for the complex variables case. Only isolated

results appear in the literature, and I have not found some results needed for

this thesis.

There are several issues that have arisen in this thesis related to this topic.

The first is a need to recognize the difference between a mapping and a change

of variables. We have unfortunately created confusion by the ambiguity of the

American language by referring to both situations with the same terminology,

whether we speak of transformations, mappings, or changing variables. At

the abstract level, the basic difference is whether or not you are changing the

measure involved. These must, in turn, be distinguished from mere renaming

of variables, which is trivial and not discussed further. The picky reader can
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consider renaming to be a trivial change of variables. The second issue is

that changing variables in the case of the complex space C' is like changing

variables in the case of the real space R In with a need to pay special attention

to the imposed algebraic structure. The third issue is the lack of results in

the literature that apply to this thesis, or the statistics of complex variables

in general.

There is a fourth issue which will not be dwelled on in this thesis, but

it is important when reading the literature. When comparing results in the

literature, very close attention must be paid to what assumptions are being

made. It is not uncommon for Cn to be treated like R In with the results

expressed in terms of R In, but discussed as if they are expressed in terms

of Cn . This point is also made in the work on complex differentiation. It is

important enough to be said twice.

The first issue is really not a trivial issue. If you apply a transformation to a

variable, are you engaged in changing variables or are you merely picking a new

point in space at which to evaluate your function? If you are interested in the

invariance properties of a particular function or measure, you want to examine

or describe the effect of that measure as you move about among your various

measurable sets. You could properly want to know the relationship between

different points or subsets in a space for which the measure is invariant. A

rule used to choose one point in a space when you are given another point in
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a space is a transformation or function that does a mapping, but it is not a

change of variables if your object is to retain the same measure and observe

its performance as the data changes.

A transformation is a change of variables situation when the intent is to

change the measure being used. The usual situation is that you want to rescale

your data to make it conceptually or mathematically easier to work with or

explain, but you want resulting integrations done with the new scaling to

provide the same answer as the integrations over the same set made with the

previous scaling. A more generalized concept is to allow the outcome of the

integration to change by a known function, not necessarily constant, but I

have not seen that discussed in any texts.

For the second point, it is not a surprise, but it is important, that you must

be diligent to consider both the imaginary and real parts of a complex variable.

Where differences show up in applications is that of structure in multivariate

data. You already know to take into account the effects of repeated block

structure, bandedness, etc. There is one more component to the structure

of the variable to consider, the effects of conjugation, summarized in table

C.1. Structure is important. The theory for zonal polynomials and group

representation theory as applied to complex variables has been done by others

for the structure of the complex symmetric case but not the Hermitian case.

Only Gross and Richards [96] have addressed the complex Hermitian case.
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Table C.1. Structure in Complex Variables

Matrix Type Meaning Diagonal Elements Restrictions

symmetric Z = ZT x + iy = x + iy No restrictions

Hermitian Z = ZH x + iy = x - iy Z 1j E R

skew-symmetric Z = -ZT x + iy = -x - iy Zii = 0

skew-Hermitian Z = -Z' x - iy = -x + iy Zj E C\R (imaginary)

The third point is that the usual discussions about changes of variables

do not address the implementation of the principles to complex variables.

The mathematician would say that it is not necessary because the theory

has been worked out for more general spaces. The engineer rarely studies

those more general spaces, and he has a daily need to work in the complex

field. This chapter archives a systematic development which includes results

specific to this thesis and is useful for other future complex variable work.

Perhaps this could be called the engineering of mathematics, if engineering is

the development of methods and tools for translating theory into application.

A nearly novel feature of this chapter to engineers is the application of

exterior products. Exterior products go by several names, depending on the

discipline of the individual doing the discussion. Another popular name for

them is wedge products. Wedge products greatly simplify the computation of
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Jacobians for nonlinear changes of variables. The root of using wedge prod-

ucts for change of variables problems is found in differential geometry. Rudin

(pp. 253-266) [229] provides a nice introduction. Muirhead [187] uses exterior

products in developing results for the real variables case. I do not know of any

reference that illustrates the procedure for application of exterior products to

the complex variable case. However, physicists and nuclear engineers are likely

to know of such a reference because they must deal with changes of variables

for tenso-s.

C.1.1 Univariate Real Change of Variables

From basic calculus we recall the technique for change of variables. Let h(x) be

some function of the variable x. Let y = g(x) be a one-to-one transformation

of x to y which is valid over some set of x E A and y E B. So, g : A --- B.

Let the inverse transformation be given by x = f(y). Let ' exist and be

continuous over B and take on non-zero values somewhere in B. Then the

function p(y) resulting from the change of variables is given by

ýp(y) = h[f(y)] IJ(x --- y)*

where IJ(x --+ Y)I is the absolute value of the determinant of the Jacobian

matrix (univariate, in this case) given by

IJAX -+ 01j det afy)
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C.1.2 Traditional Multivariate Change of Variables

Bendat and Piersol (p. 59) [38] discuss the change of variables involving multi-

valued functions of nice functions, like sin(x) and x2. The probability of having

arisen from one pre-image set is identical to the probability of having arisen

from any other pre-image set. Their discussion is a restricted case of a more

general treatment given here. One of the nicest treatments of the change of

variables technique is given by Hogg and Craig (pp. 147-152) [109]. This

introduction is taken from their pages 151-152 with only a few notational

changes. It is important enough and short enough to be included here rather

than merely just referenced.

Let x be an n-dimensional random variable, and let V(x) be the joint

probability density function of x. Let A be the n-dimensional space where

W(x) > 0 and consider the transformation y = u(x) which maps A onto B in

the n-dimensional space of Y. To each point in A there corresponds only one

point in B. However, a particular point in B may correspond to more than

one point in A. Thus, the transformation might not be one-to-one.

Suppose that we can represent A as the union of a finite number of disjoint

sets {Ai} so that y = u(x) defines a one-to-one transformation of each Ai onto

B. Thus, to each point in B there will correspond exactly one point in each
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of the Ai. Let x = Wi(y) denote the inverse functions that map B to Ai. Let

w. awl ... aw.
8 y] 0Y2 8yn

;a9yl ay2 ayn

where each • is continuous on B and the Jacobian Ji(x -f y) = det (a0 beayl a

nonzero somewhere on B. From a consideration of the probability of the union

of k mutually exclusive events and applying the change of variable technique to

the probability of each of these events, it can be seen that the joint probability

density function of y is given by
E: ýO[w(y)) IJ,(x -4 y)J , y E B

O(Y) = 4 =1

Example of y=x 2 on a Shaped Sample Space

Blame me for this example.

Consider the sample space n =(-2, -1,0,1,2,3,4,5,6) and the transfor-

mation y - x2. We want to determine the new density function V(y) when

we are given the original sample space and density function cp(x). The de-

tails are given in table C.2. The point to observe here is that the points

(-3, -4, -5, -6) are not in the pre-image of O(y). To solve the problem, the

image and pre-image sets must be partitioned such that within a given parti-

tion it is possible to define a one-to-one transformation of variables. For the
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Table C.2. Variables on a Shaped Sample Space

S- 2 - 1 0 1 2 3 4 5 6

y = x 2  4 1 0 1 4 9 16 25 36

+v'• 2 1 0 1 2 3 4 5 6

-vx- -2 -1 0 -1 -2 -3- -4- -5- -6*

example just given, a set of partitions would look like figure C.1. Although a

minimal set of partitions may exist, it is not necessary to use or even find it.

To generalize slightly, consider the continuous real random variable x E

[-2,6] having a probability density function of cp(x). Change variables with

the transformation y = x2. We want to find the new density function 0(y).

Then the inverse transformations are given by

W,(y) = +v/ 0 < y < 4

W2(y) = -vF 0 <_ y _ 4

W3(y) = + V 4 < y < 36

The magnitude of the Jacobian for this transformation is computed as follows.

IJ(X --+)01 det(a'i~ -det aYF- 1
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4 62 36

Figure C.1. Partitioning of Domain and Range for Multivalued Transformation

The new density function is given by

cp[Wl(y)lIJi(x -*y)I + [W2(y)] IJ2(x -- y)- 2p[+±ýl II-2 '

for 0 < y < 4

ýP[((Y)y 1J3(X -+ I -[ ,

for 4 < y < 36

C.2 Exterior (Wedge) Products

Exterior products are also known as wedge products because of the shape of the

operator used to denote them, A. Exterior products are most often studied by

engineers and physicists when working with tensor calculus. The theory about
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exterior products is grounded in k-forms and differential geometry. I will hide

my ignorance of those areas by not explaining the theory of exterior products

to you. Muirhead's text (pp. 50-57) [187] is a nice reference for those whose use

of exterior products is limited to the need to compute complicated Jatcobians.

Another nice reference is Rudin's undergraduate text [229] on analysis. The

more adventurous can consult Spivak's popular short book [254] on calculus on

manifolds, and the truly bold can consult Spivak's more comprehensive work

[255] on differential geometry. The reason to use exterior products is to make

difficult Jacobians much easier to compute. While the use of exterior products

is nice in the real variables case, their use for all but the simplest Jacobians is

nearly mandatory in the complex variables case.

An exterior product A is an operator that maps a pair of differentials dx

and dy into R and has the properties listed below:

dxAdy = -dyAdx

dx A dx = 0

dx A ady = adx A dy, for constant a

dx A(dy Adz) = (dx A dy) A dy

dx A(dy + dz) = (dx A dy) + (dx A dz)

The remainder of this section was supplied by me. The first property is use-

ful for combining cross-product terms between real and imaginary parts of

differentials when working with complex variables. The second property will
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reduce our work on matrices that have some structure that repeats the use of

any particular variable or its complex conjugate.

It is very useful to always consider a probability density function as a

differential. As a reminder, it is useful to always write as a part of the density

function the differential we are using. For example, instead of writing O(x),

we are less likely to make conceptual mistakes by writing ýp(x) dx. Let x be a

complex variable. When viewed in R2 , index the real part with R, and the

imaginary part with I. Then we can write dx as IdxRdxil where we take

the magnitude or absolute value since our interest is in scaling of differential

volumes. In terms of the exterior product, we write dx = IdxR A dxII.

Let us examine the differential dx A dy = (dx A dy)R + i(dx A dy)i.

dx A dy = (dxR + idxi) A(dYR + idy,)

= dxR A dyR + dxRA(idy,) + (idx,) A dYR + (idxi) A(idyi)

= d•RAdYR + idXRAdy, + idxI AdYR + i 2dx Adyi

= dXRAdyR - dxi Adu, + idXRAdy, + ,dxi AdYR

Therefore

(dxAdy)R = d•RAdYR - dxAdy,

(dxA d,), dXRAdyI + dxl AdYR

Now, let the differential ti,, ,i I, conjugate of dx. So, dx = dxR + idxJ and

dx* = (dxR + idxi)" = dxR - idxl
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This leads to dyl = -dxi.

dx A dx* = (dxR + idx,) A(dxR - idxi)

=dxR A dxR +dXR A(-idxi) + (idx,) A dxR + (idxl) A(-idxi)

0

= -idxRAdxi + idxi AdxR - i2 dxt Adxj

0

-i2dxRAdxI

Therefore (dx A dx*)R = 0 and

(dxAdx*)i = -2(dxRAdxi)

Notice that

dxA dx* -dx" Adx

C.2.1 Example of Wedge Products in Rectangular to

Polar Coordinate Change of Variables

This was supplied by me. I expect Lhat a senior in physics or nuclear engi-

neering could easily produce this example.

Let z = x + iy = rei° and let f(z) = f(x, y). We want to change variables

from (x, y) to (r, 0). Find the Jacobian of the transformation. In other words,

find IJI where

dxAdy = IJIdrAdO
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The result is the familiar dx dy = r dr dO. This result is often developed in un-

dergraduate calculus courses without the benefit of exterior products. Notice

how much simpler the development is here. With this approach there is no

magic or serendipitous hindsight required.

We begin with Iz12 = x 2 + y2 = r 2, and from

x + iy = r(cos 0 + i sin 0)

we see x = rcosO and y = rsinO. Thus

tan -0 sin 0 y

onSO = X

We now take the differentials.

dtanO= ( )do= ldy- ddx i (9dx-dy)
~coS 2 O X X2  X X I

2rdr = 2xdx + 2ydy = dr = (x2 + y2)-1/ 2(xdx + ydy)

Taking the exterior (wedge) product, we see

2r

-2-(xdx + +ydy)A[-i (Nx- dy)]2I (xd + d+ d y
x

2 [2
y IidzAdx -xdxAdy+ -dy Adx --ydyAdy]

[ 0 -dxAdy 0

2 -fX -e dxAdy = 2 [x' + y'] dxAdy
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Thus

X2 2 COS2r0dxAdy = -[2+y2}1-co2  (drAdO)

x2

Recall that cos2 0 = E2 which means

dxAdy = -- 2r 1drA

r~--2 r yX2 dAdO = rdrdO.

Therefore IJI = r and dx dy = r dr dO.

C.3 Jacobians for Complex Change of Vari-

ables

In the section we develop those Jacobians that do not require use of exterior

products. In the next section we will treat those which do require exterior

products. We begin with the most basic differential of a product of two ma-

trices.

Theorem 21 Let X E CnXm and Y E Cmxv. Then

d(XY) = X[dY] + [dX]Y

and

(dXn) E Xk(dX)Xn-l-k = nX-' 1 (dX)
k=O

when n = m. The first result is a complexification of the statement of Muir-

head's problem 2.1 [187], given without proof. It is used by Srivastava [256]
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in his derivation of the density for the complex Wishart distribution. I do not

have a record of the pedigree of the second result.

Proof.

... XIM Y ... Yi p

XY EXikYkyj
[(k~lij]

X,,.. Xnm Yml ... Ymp

(d(xY)ij) = [( Ml[(dXik)YkJ + Xik(dYkj 3 ))]

= [((dXik)Ykj) + (_ Xik(dYkj))] = (dX)dY + X(dY)

Thus
n-I

(dX") = E Xk(dX)Xn- 1-k = nX: (dX)
k=O

0

Note that (dX) is a scalar, whereas DV is an (nq) x (mp) matrix when Y

is q x p and X is n x m, and dX is a matrix of differentials (dXij).

Theorem 22 Let x and y both be column vectors in Cn, and let B E CnX,

such that Re(B- 1 ) exists and let B- 1 = A E Cn"n such that A is unstruc-

tured. Let y = Ax be a complex linear transformation from x to y. Then

IJ(x --+ y)I = Idet(A-1)1 2 = Idet(B)12 . This is a complexification of Muir-

head's theorem 2.1.1, stated in a slightly different form.

Proof. Muirhead gave a proof for the real-variables case which used exterior

products. The proof I have provided follows a more traditional approach. This
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first proof of a Jacobian will dwell more on basics than future proofs. It is

important to see the details once.

When forming the Jacobian of a change of variables in the complex case,

recall that each part, the real part and the imaginary part, of the complex

variable undergoes a change. Suppose we have some function

P.(Xi,X2,... ,Xn) = Px(XR1,•X1,.-,XRn, XIn)

where the subscripts R and I denote the real and imaginary parts of the

associated complex variable. The goal is to find a function

Py (YI, Y2,"" , Y) =- P p(YRI, YI,., Y.n, Yin)

which is related to px by the mappings

YR1 -gRI(XRi X1,.I, XRn, XIn)

YII 91 g(XR1, XII,",XRn, XIn)

YRn =gRn(xR1, xI," , xRn, x In)

Yin =gin(xRl, x11,", XRn, xjn)

Let the inverse mappings be given by

XRi = fAl(yR1, yl1, , YRn, Yin)

Xii = f~lI(YRI, YI11', YRn, Yin)
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XRn = fAn (1RI, Y11r, YRn iYIn)

Xjn = fln (1/R, YRi< ,1Rn, 1/In)

If the partial derivatives of fRa and fii with respect to each of the 1/Rk and 1/1k

exist, then the Jacobian is the determinant of the matrix given by

2...AL... UIan 22ha
19YRI &YR1 ai9RI 8 /RI

UALM... 8LRn 2 1in

8 iI~n 8 Rn a8Rf

Consider the inverse transformation given by

XRI + iX1l BRI1 + iBril.. BRIn + Z'Biln 1/RI + i1/i

XRn + ix 1n BR., + iBIni ... BRnn + ZiBinn 1/Rn + i1/In

Then

XRkc + iXIk = Z(BRkj + iB~k3 )(1/Rj + iYij)
j=1

- Z(Bnk1/R, - Blkjyij) + i(B~k3 YR3 + BRkjYI 3 )I
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By equating the real parts with each other, and doing likewise with the imag-

inary parts, we get

n

XRk = E (BRkjYRj - Btkjyit)
j=l

n

XIk = F, (BIkjYRj + BRkjYIj)
j-=1

Thus the partial derivatives are given by

OXAz axR& BRkj - BIkj(9YR$ i9Ylk

8!Lk xikJ Blkj BRkJ
49YRj Yli _

In the transformation, it is the absolute value of the Jacobian which we need

to evaluate. Knowing this relaxes the bookkeeping required while reforming

the matrix of the inverse transformation. We seek the form of

1ji det (([XkII

BnI, Bill BR21 B121" B~nl Btnl

-Bill BRil -B 1 21 BR21 ... -Blnl BRn1

BR12 B 1 2  BR22  B122  "' BR,2 B1 n2

= det -Bi 12 BRi2 -B 122 BR2 2 .. -Bin 2 BRn2

Bln. Bln B. B1n . BRnn BInn

-BIn BRn1 -B1 2n BR2n ... -B 1 nn BRnn

Notice that the indexing of the block matrices Bkj = Bjkj in

-s Bw n wrkj
this equation for the Jacobian is the transpose of the matrix B when written
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in its R 2n isometric form. By exchanging rows, we get

BRIl Bill BR2i1 B 12 1  ... BR.1, B1 ,•1

BR12 B11 2  BR22 B122  BRn,2 B1 ,.2

BRIn Bl,, BR21  B121n " BRn.1  Bin.
= det

-Bill BRll -B 1 21 BR21 ... -B 1in BRnl

-BI 12 BR12 -B 1 22 BR22 ... -Bt . 2 BR . 2

-Btln BR1 . -B 1 2n BR .2n ... -B1 . . BRn.

Notice that all the negative elements are now in the bottom half of the matrix.

By exchanging columns, we get

BR1l BR21 "'" BRn1 Bill B 121  Bt .1

BR12 BR22 BRn2 B 112  B1 22  ... Bt .2

BRln, BR2 .  ... BR1 . ,.  Btl B1 2.  B 1 nn
IJI = det

-Bill -B 1 21  -Bin, BR11 BR21 . B, 1.I

-BI 1 2  -B 1 2 2  -Bt . 2 BR12 BR22 BRn2

-B 11 -B 2 n. -Bt 1 BRIn BR2.. BRn. .
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Now we see that all the negative elements are in the bottom left quadrant. We

have
T-

IJI = det = det = det

-BT BRT BI BR BI BR

since the determinant of a matrix is equal to the determinant of its transpose.

Using lemma 45, this becomes IJI =det[BR] det[BR - BIBR'(-BI)lI where

we need Bý1 to exist.

IJI = Idet[BR] det[BR + BIBR'BI] Idet[BR] det[(I + BIBý'BIBý1 )BR] I

= I(det[BR])2det[I + (BIBý')21I

= f(det[BRj)2 det[{I + ZiBrB'}{I - iBBý'}]J

= I{det[I + iBjBI 1 ] det[BR]}{det[I - iBIB 1 ] det[BR]}

= I{det[BR + iBi]I{det[BR - iBiI}I = I{det[B]I{det[B]}*l = Idet[B 12

We also know that

Idet[B] 12 = I{det[B]}{det[B]}*1 = I{det[B]}{det[B*]1}

by lemma 42, which becomes

I{det[BB*]1I = {det[IBI2I}

To summarize, given a complex linear transformation y = Ax where each

of y, A, and x are complex, with inverse transformation

x = A-'y = By = (BR + iBj)y
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then the Jacobian of the transformation is given by IJ(x --+ y)l = Idet B12 =

Idet A1- 2 . 0

Proposition 30 Let x = By be a change of complex variables such that x, y E

C' and B E C"'" except that the first column of B is constrained to be a

column of all ones. Then IJ(x --+ y)I = Idet BI2 and fJ(y -- x) = Idet B- 2 .

Proof. This issue arose in deriving a complex version of Anderson (pp.

522-530) [26] theorem 13.2.2. There was concern over the possibility of the

Jacobian being anomalously zero due to all zero entries in the imaginary part

of the first column of B. The important message of this proof is that the

concern is unfounded.

Let

X 1 B12  "- B1 n Yi

X2 1 B 22 ... B 2. Y2

x, 1 B, 2 .. Ba,, Yn

Then

n n

XRi + ix!, = YIRi + Z.(BRijyRd - Bijy 1 j) + i Z(BIJIyRj + BRijyIj)
j=2 j=2

where the subscripts R and I refer to the real and imaginary parts of their

complex variables. The Jacobian matrix for the change of variables is given
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by

1 BRI2 ... BR 1 . 0 -Bt 12 .... B

1 BR22 ... BR2n 0 -B 1 22  -B.l2 n

( Pi k 1 BR n2 ... BR:, 0 -B 1 , 2  ... •3I,,
aXR i9XRj_

?-MR O 0 BI 12 ... Bl,, 1 BR12 ... BRln

0 B122 ... N12n 1 BR2 2  ... BR2.

0 B,, 2 ... Bt,,, 1 BRn2 ... BRn,

BR -B 1

B1 BR

As shown in theorem 22, the determinant of this matrix is found by the par-

titioned matrix determinant lemma 45, if the determinant exists. Thus

(BR - B,'
det = det (R) det (BR + B RBjB1 )

BI BR

Let AR = BR1 . Then

n n n n
0 TQ B1 1 j F_ ARjiB1 i2  E B1 li F: AR 3 IBI,,,

j=2 i=1 j=2 i=1

n n n n

0 E B1 ,j ,, aRjjB1 2 ... E Bij E: ARjjBIi-
j=2 =1j=2 i=

Even though column one is zero, when we consider det(BR + BIBRIBi) we

observe that the determinant is not necessarily zero. Thus we can claim that
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except for pathological cases, det 0 ]det B12. 0

B1 BR

Lemma 2 Let Y = TL be a change of complex variables where Y and L are

in Cn•XP and T is upper triangular in E CnXn . Then the Jacobians of the

n
transformations between Y and L are jJ(Y -- L)l = Idet Tj2P = rH ITkk 12p

k=1

and IJ(L -+ Y), = [I iTkk1- 2 ".
k=1

Proof. We begin by treating the matrices as the sum of their real and

imaginary parts.

YR + iYj = (TR + iTI)(LR + iLI)

Then matching the real and imaginary parts we get

YR = TRLR - TiLl

and

Y1 = TILR + TRLI

Then
R :OYR\ 0 i':9YR' T = _ 1"i ' fi0

=RTR l, --T,®-T, e -LR

and

Y = TR ® Ip

Note that this is merely the Cauchy-Riemann condition for the existence of

the complex derivative at the points given by L. It is more apparent in the
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form: _YAR = ( and (_aa) " -I- To find the ,Jacobian, we willfom:9Lnl = aLt c)LI] O -;LR"

examine

9( YR 1( )1a4T//
det OLR OL = det detI

a Y, O1JI ® J dt
°LR --L T1 0 Ip TR 0 1p TI TR

by lemma 49. We now apply the partitioned matrix determinant lemma 45 to

get

1det(TR) det(TR + TTi'T) IP = I[det(TR)]' det(I + TR' TTýW"T,)IP

= [det(TR)]2 det[I 4- (Tj1Tl))'] 1 = (det(TR) det(I + I

By proposition 65 this is

Idet(TR + iTI)I 2p = Idet TI2p

since TR is conformable with the matrices I and 7If'T1 . The last term is the

magnitude of the determinant of complex triangular matrix T raised to the

power 2p. Thus the Jacobian of the change of variables Y = TL is given by

IJ(Y -- Q = IdetTFI12 and IJ(L -+ Y)I = Idet T1-2p. 0

Lemma 3 Let Y = TA be a change of complex variablcs be twern Y and A

where Y E Cn'pX, A E Cn P, and 7' is lower triangular in C"7" with positive

real elements on the diagonal. Then I./( -- A)I = H 7, and I.I(A -- Y)I =
k=l

f1 T p.

k=1
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Proof. By lemma 2, we know IJ(Y -- A) = IdetTI2P. At this point in

lemma 2, no use of the fact that T is triangular has been made. Since T is

n

lower triangular with positive real diagonal elements, then det T = l- Tkk and
k=1

therefore IJ(Y --+ A)I = l Tkk' and IJ(A --- = I T2P. Eo
k=1 k=1

Lemma 4 Let Y = AT be a change of complex variables between Y and A

where Y E CflpX, A E Cnxp, and T is upper triangular in CP'P with positive
P

real elements on the diagonal. Then IJ(Y -- A)I = IH Tk,•" and [J(A -+ Y)f =
k=1

rl T,.
k=l

Proof. Y = AT implies that the transpose is yT = TTAT. Note that

yT E CP"n, AT E CpXnf, and TT e CPxP. The matrix TT is lower triangular.

By lemma 3, j(yT... AT)j - F Tk"kn. Since the Jacobian determinant is
k=1

scalar, it equals its transpose. Thus J(yT -A) = IJ(Y -- A)I. Therefore
n n

IJ(Y -4 A)I = I Tk and JJ(A -, = k T [

k=1 k=1

Lemma 5 Let Y = AT be a change of complex variables between Y and A

where Y E C"×p , A E Cn 'P, and T is lower triangular in CPxp with positive

p
real elements on the diagonal. Then IJ(Y -+ A)I = H- Tkk" and IJ(A -- Y) =

k=1

fl T;2n.
k=1

Proof. Y = AT implies yT = TTAT where yT E Cpxn, A T E CPxn, and

TT E CPxP. TT is upper triangular. By lemma 2, [J(yr.._ AT)j = Hi T•,
k= I

P 7 ' a d J( -+Y l = P - n 0

which implies I.](Y -+ A)f = flHT" and HJ(A -- )I) = H .
k=1 k=l
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Theorem 23 Let Y = TATH be a change of complex variables between Y

and A where Y E CP'P, A E CP'P, and T is lower triangular in CP'P with

positive real elements on the diagonal. Let B = TTH. Then IJ(Y -+ A)l =

-l Tk = Idet Tj4P = Idet BI2p = (det B)2 P.
k=1

Proof. Consider Y = TATH as two transformations Y1 = ATH and Y =

TY1 . TH is upper triangular with positive diagonal elements. Apply lemma 4.

Then

IJ(Y1 -+ A)f = II Tk2 = Idet T12p
k=1

Now apply lemma 3 to obtain

PJJ(Y • r -) ft T-I T = Idet TI2 p

k=1

Thus

JJ(Y -- A)l = JJ(Y --* YI)l " IJ(YI - A)l

Idet TI4p-- Idet TT I2V= Idet Bj2 = 1"f T1M
k=1

The magnitude symbols may be dropped since Tkk is real for all k. 0

Example 3 This quick example illustrates the minute details of the action in

theorem 23.

Y11 Y12 Y13  T All A12 A13  TI 21 T;,i';

Y21 Y22 Y23  = T21 T22  A 21 A22 A23  T22 T;2

Y31 Y3 2 Y33 T31 T32 T13 A 31 A 32 A33 T33
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TitA 11 T11  AIIT2*1 + A 12 T22  A11T3*1 + A 12 T;2 + A 3 T33

- T21 T22  A21T11  A2 lT;1 + A22T22  A2lT;1 + A22T*2 + A23T33

T'31 T32 T33 A31 T11  A3lT;1 + A32T22  A31T;, -, A32T;2 + T33A3

T11A11T11

- T21A11 T11 + T 22 A 21T11

T31A11T11 + T3 2A 2 1T11I + T.3A 31 T11

TI1A11 T2*1 + T11A 12 T22

T21A11T2*1 + T2jA 12T22 + T22A 21T2*j + T22A 22T22

T31A11T21 + T3jA12T22 + T32A21T2*1 + T32A22T22 + T3A 3 IT21 + T3A 32T22

T11AI1T3*1 + T11A12T;2 ± T1 1A 1 3 T33

T21A11T3*1 + T2lA 12T;2 + T2 1A1,3T3 + T22A 21T;l + T22A22T;*2 + T22A23T33

T31AIIT31 + T3lAl 2T*2 + T31AMT3T + T32A2IT3*j + T32 A22T*2 ][ T32A23T33+ T3A,3jT1 + T33A32T;2 + T33A3T 33  J

The element for the third row in the last column has too many terms to fit

onto one line, and it is therefore enclosed in square brackets. Recall that each
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Aij= AREj + iAlij. We get the following differentials.

dYRll = T2 dARII dY11 = TjldAIIj

dYR21 = T11T 22 dAR2 1 + ... dY21 = T11T22dA1 21 +""

dYR12 = TIlT 22 dAR12 + dY.12 = TI1 T22dA1I2 +'"

dYR13 = TllT33dAR13 +. dY1 1 3 = T 1T33dA 1 3 +...

dY,31 = T1 1T33dAp 1 + dY131 = T1 1T33dAI 31 +

dYR22 = T2 dAR 2 +"** dY122 = T22dA1 2 2 +"*

dYR2 = T22T33dAR 2 +"" dYI32 = T22T33dAI 32 +""

dYR23 = T22T33dAR23 + dY123 = T22T33dAI 23 +""

dYR33 = T32dAR33 +" dY,33 = T32dAI33 +"

Therefore

dY = T2T222 T3dA = (det T)1 2

where p = 3. Let B = TTH. Thus

dY = (det T)4 p - (det B) 2p

Theorem 24 Let Y = TATH be a change of complex variables between Y and

A where AH = A > 0 and Y are both in CP'P, and T E CP"P is lower triangular

with positive real diagonal elements. Let B = TT H. Then jJ(Y -* A)I -

(det T)2P = (det B)P and IJ(A -+ Y)I = (det T)-2 P = (det B)-P.
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Proof. By corollary 36 there exists a unique p x p lower triangular matrix

L with positive real diagonal elements such that A = LLH. Thus

Y = TLLHTH = CCH

where C = TL. C is lower triangular in CPxP with positive real diagonal

elements Ckk = TkkLkk. By theorem 26,

JJ(A -+ LLH)( = 2P 1 LPk)+-
k=1

By lemma 6,

JJ(C -+ L)I = JJ T-'
k=1

By theorem 26,

P

jJ(Y -- ccH)I = 2P II(TkkLkk) 2 (p-k)+l

k=1

Now we put the Jacobian all together where we take the inverse of the Jacobian

[J(A --, LLH)I.

IJ(Y --+ A)l = -j~ _ CCH)I. _Ij(C -+ L)I.- jJ(LLH --+ A)I

=(2P ll(TkkLkk)2P)1 (ft Tk~kk-1) (2-P fpjL
k=1 k=1k=1

PPP

= IJ Tk2 = (det T) 2
p = (det TTH)P = (det B)P

k=1

Therefore

IJ(Y --+ A)l = (detT)2p = (det B)P
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and therefore

IJ(A --+ Y)I = (detT)-2p = (det B)-P

0

Proposition 31 Let A and G both be lower triangular complex matrices where

the elements on the diagonal are complex. Let T = AG define a change of

variables between T and A. Then
p

IJ(T --+ A) = 11 IGkkI2(p-k+1)

k=1

where Gkk = GRkk + iGtkk, and

IJ(A -+ T)( = 1] IGkk 1-2(-k+l)
k=1

This is the second equation Khatri section 2.5 [137], stated without proof, where

he uses J(T; A)= IJ(T -+ A)j. This result differs from Khatri's result.

Proof.

Ti I

T21 T22
T=AG=

TpI p ... Tpp

All

A 21 A22
X

A p, A p2 ... A pp
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G21 G22
X

Gp p Gpp

A11 G11

A21G11 + A22G21  A22G22

E Ap ~ i F ApkGk *...App

k=l k=2

where T2,= Ajk~ik1 for i > j is a typical element. We expand this element.

= j [(AikG~qk - Ai~kGlk3 ) + i (AIiAkGRCj + ARikGlk1 )]

We now compute the Jacobian of this transformation, IJ(T -+ A)l. Consider

the Jacobian matrix having the following rows.

8TRii aThii OT~ 1TR aI TB

89ARII i9A111  9AR21 8A 12 , aARpp 8AI,,p,

OTVV8Tp aT,,E aTRUL ... 
2ai 8Ta~

OARII 8AI 31  8A R21 aA 121 9A Rpp a~,

i9T,,, aTR,, aT,, aT,,,, aTR. i9]p
aARI I OA,,, aAR21 8A 121 9ARpp, 9Ap
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The partial derivatives yield a block structure as illustrated in the Jacobian

matrix below. The left half of the matrix is given on top, and the right half of

the matrix is given on bottom. What you should be looking for is the pattern.

GCR1 -GIl, 0 ."

Gill GR11 0 ...

0 0 GCR1 -Gill GR21

G ll GCR1 G 1 2 1

0 0 GR22
det

* . G 1 2 2

0
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-G 1 21  0

GR21 0

-G 122  0

GR22 0

0 GRni -Gill GR21 -G 1 2 1

Gill GRi, G121  GR21

0 0

Oil 0 ...

0 11 0 2 1  0 ...

0 0 G22  0 ...

=det 0 Gll G 2 1 031 0

0 G22 G32  0

0 0 G 3 30

0**

The Jacobian is the magnitude of the determinant of this matrix.

IJ(T -+ A)I = det
IHl21 IH22
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where the Jacobian matrix has been partitioned so that Gii GRI-G

Gi1 , GRUl

1H12 = 0 and IH 21 = 0 where 0 is a matrix of zeros of appropriate dimensions.

The lower left subscript on H identifies the block number. It is the number

of row blocks that are excluded from the full Jacobian matrix. We continue

with the sequentiai partitioning scheme to compute the Jacobian by using the

partitioned matrix determinant lemma 45.

[ Gi 1H21 1
det = jdet(G1)" -det[iH 22 - lH 21G1

1 
1H 12]1

1H21 1H 22

= Idet(G1n)l. Idet[1 H 22]I = det G0l 2 Idet[ 2 H 22]I

Idet 1102211det[ 3 H2211 = II Idet OkklP-+I
K=1

Note that

Idet OkkI = det= Gkk + Gikk = IGkkI2
GIkk GRkk

where Gkk = GRkk + iGlkk. Therefore,

p

fJ(T -- A)I = 1- 1Gkk12(p-k+l)
k=1

By the inverse property of Jacobians,

JJ(A -- T)l = 1 IGkk1- 2(p-k+l)
k=1

01
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Proposition 32 Let A and G both be lower triangular complex p x p matrices

with real diagonal elements. Let T = AG define a change of variables be-

tween A and T. Then the Jacobians of the transformations are JJ(T -+ A)I

[I G"-Pk)+k and IJ(A -- T)t = fI G-(pk)-. This is the fourth equation of
k=-I k=I

Khatri section 2.5 [137], which is stated without proof. This result diffcrs from

Khatri 's.

Proof. Notice that since A and G are both lower triangular with real

diagonal elements, then T also is lower diagonal with real diagonal elements.

A typical element of T is given by TRjk + iTIjk = 7ij where

i

Tij = Z E[(ARikGRkj - AlikGtkj) + i (AtikGbkj + AnikGIkj)]
k=j

j-1

= : [(AijqGiqk - AljqGlqk) + I(AijqGnq. + ARjqGlqk)j + AjjGRjk
q=k

For example,

TI, = AIGII

T21 = AR 21Gl + i(A 1 21G1,) + A 22 GR2 1

We separate the real part of the equation from the imaginary part. This

implies

TR21 = An2IGtI + A 22 GR2 1

T121 = A 121G,1 + A22(; 1 21
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We repeat this procedure for each element that is not a pure real element or

a pure imaginary element.

T22 = A22G22

TR, = AR31 G1 1 + AR32GR2 1 - A132 GI21 + A33GR31

T131 = AI31Gli + A132 GR21 + AR3 2GI21 + A3G 1 31

TR32 = AR32 G22 + A3GR32

T132 = A 132G22 + A3G 132

T33 = A3G33

Then the Jacobian IJ(T - A)I is computed as the determinant of

Gil

Gil 0 GR21

0 Gil G121

G22

Gil 0 GR21 -G 1 21 GR3i

Gil G1 21  GR21 G131

G 22  0 GR32

G22  G132

G33

..... .....
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From this pattern we can see

P

JJ(T -+ A)j = ' -(P-G)+l
k=1

and

IJ(A --+ T)j = fi Gkk)-
k=1

0

Proposition 33 Let A and G both be lower triangular complex p x p matrices

with complex diagonal elements. Let T = AG define a change of variables

between G and T. Then the Jacobians of the transformations are IJ(T -+ G)I =

1 IA~kk2 k and IJ(G -+ T)j = IH IAkkVIk This is the first equation of Khatri
k=1 k=l

section 2.5 [137], which was stated without proof. Closely compare this to

lemma 31 to see that before we changed variables between A and G, the order

of the constant and variable matrices have been changed. This result is different

than Khatri 's.

Proof. The matrix -, is given by the following. The left half of the matrix

is in the top display, and the right half of the matrix is in the bottom of the

displayed pair. You should be looking at the pattern of the elements. The top
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half is:

AR11 -Ail,

All, AR1 1

AR21 -A 1 21 AR22 -A 1 22

A1 21  AR21 AI22  AR22

AR2 2 -A 1 22

A122  AR22

AR31 -A 1 31 AR32 -A 1 3 2

A131  AR31  A132  AR32

AR32 -A 1 32

AI32 AR 2

. . . . . .. . . . ... . . . . . . .
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The bottom half is:

AR33 -AI33

A13 AR3

AR -AI3

A133 AR33

Apm -AI33

A133 AR3
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This patterned matrix gives a Jacobian determinant

All

AN1 A22

A22

~J(T -~G)I A31 A32  A33  ] I IAkIk II IAkI 2

k=l k=l

A32  A33

A 3 3

where Akk = ARkk + iAlkk and

(k ARkk -AIkk

AIkk ARkk

By the inversion property of Jacobians, we also have

p
IJ(G -- T)I = I IAkk1-2k

k=l

0

Lemma 6 Let A and G both be lower triangular complex p x p matrices with

real-valued diagonal elements. Let T = AG define a change of variables be-

tween G and T. Then the Jacobians of the transformations are IJ(T -- G)j =
P 2 -P 2 l

-l Akk-' and IJ(G -- T) = l- Akk This is the third equation of Kha-
k=1 k=l

tri section 2.5 [137], which was stated without proof. This result differs from

Khatri's.
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Proof. The Jacobian IJ(T --+ G)l is computed as

All 0 0 0 0

AR21 A22  0 0 0

A121  0 A22  0 0

0 0 0 A22  0

AR 1 AR32 -A 1 32  0 A33
det fi Akka-

AM3 1 A 132  AR32  0 0 A33 k=1

0 0 0 AR32  0 0 A33

0 0 0 A1 32  0 A33

0 :::: A33

By the inverse property for Jacobians,

p

fJ(G -+ T)I = H A-k+l
k=1

C.4 Jacobians Requiring Exterior Product Ap-

proach

It is true that only a few of the Jacobians to come will be derived using the

exterior product. However, those to immediately follow are very important
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to our handling matrix quadratic forms, such as the complex Wishart matrix.

We begin slowly with a important case. This is worth following closely as an

example of the power of using an exterior product approach for a nonlinear

change of variables.

Theorem 25 Let T be an upper triangular complex matrix of size p x p with

positive real elements on the diagonal. Let B = TTH. Then

p

IJ(B -+ T)I = 2P f Tk•k-)+I
k=1

and

IJ(T -- B)I = 2-P fI Tk 2(k-l)-l

k=1

This is a complexification of a variation of Muirhead theorem 2.1.9 (p. 60)

[187].

Proof. This is a complexification and slight expansion of Muirhead's proof.

We begin by looking at the matrices.

B 11 B 12  "Bp

B*2 B 22 ... B2p
BB=TTH 

12

Bj* B* ... Bp
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T11 T12 T13 ... Tlp TII

T22 T23 ... T•p TJ"2 T2 2

T33 ... T3p TI 3 T23 T33

TPP Tj'p T•p T•p ... T,,

Note that the diagonal terms of TH do not have the asterisk since TI = Tii

because T11 E R. Columns of the matrix TTH are given below to make the

pattern of entries clear. Columns 1 and 2 are:

T?1 +{ I ITtd2  T12T22 + E T 3 T2*j,

j=2 j=3

T2 2 TJ2 + E T2 T +T*, ITT2IE
j=3 j=3

T3TI3 + E T3jT;j T3T2*3 + E T3jT~j
j=4 j=4

P P
T44T1h + E T4jT1 • T44T2 + E T T2*

j=5 j=5

T(P-,),(P-I)Tl*.(p-) + T(P-1),PTi. T(P-1),(P-1)T2,(p1) + T(,-1),PT2,p

VPT,T*P TPPT•,
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Columns 3 and 4 are:

P P
T13T3 + E TlT• T14T44 + E TljTZ *

j=4 j=5

P p
T23T3 + E 2jTZ j T24T44 + E T2jT4*,j=4 j=5

T3 + • IT3 2 T34T44 + E TZ T;*
j=4 j=5

P P

T42 4+I 4 IT44T:4 + ~E T4jT3*, T4+ ==T4j 12

T(P_,),(P_,)T3*(p_1) + T(P-l),PT3*p T(P_,),(P_,)T4*(p_1) + T(P_1),PT4*,p

TPPT~p TP,,T;p

The last two columns are:

T,,(P_,)T(P_,),(P_,) + T,,PTiýP-i),P T, PTPP

T2,(p-1)T(p-1),(p-1) + T2,pT(p-1),p Tpp

T3,(p-1)T(p-1),(p-1) + T3,pT(*p-l),p Tpp

T4,(p- 1)T(p-1),(p- 1) + T4,pTi•_l),p T4pTpp

2_l),(p_+) •I T(pl),pI2 V(p-1),pTpp

TP PT(*P_-),• T P

To find IdBI we take the exterior product of the differentials. We begin

with the term T~P = Bpp and work backwards through the array. This tactic

simplifies the algebra in the following way. Once a term dT1 j is computed, it

never needs to be computed again. In forming the overall exterior product,

repeated differentials cause that product term to be zero; dTij A dT3j = 0. Our
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next step is to form the differentials needed.

Bp = T2 dBpp =2Tpdp

B~-)p=T~-)p = [TR(p.1,p) + iTJ(p-l,p)1Tpp

=Rpp TR(pl,,p)Tpp dBR(p-l.p) =TppdTR(p-.,,p) + .

BIp =p TJ(p.l,,)Tpp dB=-,p TppdTI(p-l,p)+

BR(1,p) TRlpTpdBR(l,p) =TppdTR(l,p) +

B =jp =IipTpdIp TppdTJ(l,p) +-

B~-,-)= T4._,-,p-1 T(Pl,P)~) dB(p-,,p-) =2T(p-,,p-)dT(p.l,,..l) + - -

= P + Tl T(P , P)

BR(l1,-1) = TR(I,p-1)T(p..l,p-1) + dB=~p, T(p-,,p-l)dTR(l,p-4) +

Bip- = TI(l,p-l)T(p...,,p-) +B(,PI = T(-, +dT(~p,

B34 = T34 T4 + dBR34 = 2T44dTR34 + .

dBI34 = T44dTI34 + .

Bil T11 +dB 1 = 2T11 dT11 +**

We examine dBR(p.l,p) as an example of the reduction in terms achieved due

to recurrence of differentials in different terms.

dBRp-Ip)= (dTR(p-,,p))T~p + TR(p.l,,)dTpp
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When the product dBpP A dBR(p-l,p) is formed we get

dBPP A dBR(p.l,p) = 2TppdTpp A[TppdTR(pI,,p) + TR(p..l,p)dTpp]

= 2T~PdTPP A dTRtP,,P) + 2TppTR(p_j,p) dTPP A dTpp= 2T~PdTPP A dTR(p_,,)

0

Therefore, to simplify algebra, we need only to keep track of dBij terms which

have not already appeared in our sequence of computations. Also note that

if both terms in a product have appeared in an earlier computation, they do

not need to be considered again. This is because their differentials will be

multiplied by the same differentials from earlier computations, yielding zero.

This is first seen in our computation of dBR(l,p_l).

BR(1,p-1) = T±(1,p-I)T(p-1,p-1) + TR(I,p)TR(p-I,p) - TI(j,p)Tt(p-I,p)

dTR(l,p) first appears in dBR(1,,)

dTR(p-,p) first appears in dBR(p-l,,)

dTt(l,p) first appears in dBI(lp)

dTt(p-lp) first appears in dB,(;..l,p)

Note that for an Hermitian matrix B = BH, we need only to look at the

superdiagonal elements. This is because in doing so, we generate terms involv-

ing the differentials of all real and all imaginary components. For example,

consider B(P-1 ,P).

S= TT ,) = Tp[TR(,p) -
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BA(P_,,P) = TppTR(p-4 ,p) dB7(PlP) = TppdTR(p..,P) +...

B•(P-IP) = -TppTI(p_.,p) dB*(PlP) = -T vdTI(p_ .,p) +...

Recall that we already have

dBR(p_.,p) = TppdTR(p-l,p) +..

dB,(p-,,p) = TppdTI(p-l,p) +""

Thus, when the exterior product is taken, terms containing both dBjj and dB•

will be zero.

Observe that each dBkk term contains a factor 2. Thus A dBkk = 2 PTkkdTkk.
k=i

The off-diagonal terms need a bit more care because the differentials for both

the real and imaginary parts must be considered. Note that each differential in

a given column k has the factor Tkk. We therefore can think of taking the prod-

uct of all the terms in the matrix where Tkk is the result of dBR(j,k) A dBI(j,k).

2T11  T22 .- T2

2T 22 ... T•2

2TvP

P T 2 ( k -i ) + , . .
Thus IJ(B --. T) = 2P I1 Tkk).o

k=1

Theorem 26 Let T be a lower triangular complex matrix of size p x p with

positive real elements on the diagonal. Let A = TTH. Then IJ(A -* T)I =
P ,2(p-k)+, ) -P

2p [ Tk and ]J(T - A)Il-I T; 2(p-k)-l. This is a complexifica-
k=1 k=1

tion of Deemer and Olkin theorem 4.1 [67]. This is used by Khatri [137] in his
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proof of theorem 2.8 just before equation 2.8.1. This is Srivastava and Khatri

problem 1.29 [257].

Proof. This proof follows the model set for theorem 25 by Muirhead rather

than complexifying Deemer and Olkin's proof.

All A 1 2  Alp

A=TTH= A12 A22 ... A2p

A*p A2*p ... App

TI I

T21  T22

T 3 1  T3 2  T3 3
x

TP-I,p Tp-l,2 Tp-1,3 ... Tp-l,p-1

TpI Tp2 Tp3 ... Tp,px - Tpp

T,,I T2*, T3* ... TP*_ ,,1 TP*1

T2 2 T32 ... T;1,,2  T;2

T33 .. T;_ ,.3  T;,3
x
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The columns of TTH are given below. The first three columns are:

T2 T I T21 T;1 + T2 2  T21 T31 + T2 2T;2

T31 T1 1  T31T2*1 + T32T22  T3 IT;*1 + T3 2 T;2 + T3
2
3

Tp. 1 ,1 T1I Tp-I,IT2*1 + TP- 1,2T22  Tp-1 ,1 T;, + Tp- 1,2T;*2 + Tp- 1,3 T3,

TPITII TpIT2*1 + Tp2T22  Tp,1T3*1 + Tp, 2T;*2 + Tp, 3T33

The next to the last column (p-1) is:

T~~*1,1 + T22Tp... 1,2

T3lT;1-,l + T32T;*1,2 + T33T;*1,3

Tp-l,lTpi 1 ,1 + Tp12p-, + TPI,-

Tp,iTp*Iil + TP,2TpL. 1,2 + + TpPIP-~-

The final column (p) is:

TI IT.1j

T21 T1 + T2 2 Tp2

T31T;1l + T32T;2 + T33T;*3

Tp-, 1 T;1 + Tp- 1,2T;*2 + + Tp-l,p-T;*,p-

TP1T;,j + Tp2T;2 + +.. + p
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From this matrix we compute our differentials.

All = T21 dA11 = 2T11 dT11

A21 = T2TI

AR21 = T1 2 1T1 l dAR21 = TlldTR21 +...

A 1 2 1 -T21T= l dA 121 = TIjdT1 21 +-...

ARp1 =TapITI dARpI = TlldTRpl +

Alp= T1p1T dAlp, = T11dT1 p1 + "".

A 2 2 = T 21[TR2 1 - iTI21] + T2 2 dA 2 2 = 2T 2 2 dT 2 2 +-...

Observing the pattern and recalling the patterns generated for the upper tri-

angular case, we see that for the lower triangular case that we get

p ,T2(p-k)+ 1
IJ(A -- T)I = 2P H Tkk

k=1

IJ(T - A)I = 2-P F TH -
k=1

0

Theorem 27 Let T be an upper triangular complex matrix of size p x p with

positive real elements on the diagonal. Let A = THT. Then

IJ(A --* T)l = 2P 11 Tl2(pk)+l

k=i

and

IJ(T --* A)j = 2-P 1I T, 2(p-k)-i

k=1
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This is a complexification of Muirhead's theorem 2.1.9 [187]. This is also

Goodman equattin 5.25 [92].

Proof. This is a complexification of Muirhead's proof.

All A12  Alp

A = THT== A* 2 A22  *

. . ...

Aj~p A2p ".." App

Ti I T1l T12 .. Tip

T;• T2 2 T22 ... Tp

• : ".... •;T

Tj* 1  THT 12  ... TnTip

T{2T1  T1*2T2 + T .TT2
2
2 T2p

: :....T2

Tj'P TI Tj T,2 + Tp T22 T.. ,T1, + T;,T 2P + T;pT2 , + ...

Note the similarity of this with the A of lemma 26. Instead of forming the

exterior product from the lower triangular terms of A, use the upper triangle
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of A.

A11 = T111 dA11 = 2T11 dT11

A12 = TnIT 12

AR12 - TlTR12  dAR12 = TjIdTR12 +...

A 1 2 =TJTI12 dA112 = T1 adT 1 2 +

ARy = Tn1TRlp dARi= T11dTRlp + ...

Al,= TIITIlp dAlap = T1adT1 lp + "".

A22 = Ti*2 (TR12 + iTI12) + T22 dA22 = 2T22dT22 +...

Thus

IJ(A --- T)j = 2P HI Tkk )+l
k=1

IJ(T --* A)I = 2-P H T; 2 (p-k)-1
k=1

Theorem 28 Let Y E Mp(C) and A = yHy. Then

7-
2

IJ(Y -- A)j- C[l(p)

and

IJ(A •Y)I = CFP(p)
7rp2

Proof. This lemma depends on integrals that are proven under the section

of helpful integrals. From theorem 150 with E = I we have

fA>0oetr(-A)(det A)-P(dA) = CFp(a)
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From proposition 105,

IM(C)etr(-yHY)det(YHy)a-P(dY)- rp2 CFr(a)
IM,(C) ecrp(p)

Let A = yHy. Then

cr2p) IM,(C) etr(-YHy)(det(yHy)-P(dY) = CFp(a)

Therefore IJ(A --+ = cr-(- )

Theorem 29 If the density of Y E CP"× is a function of yyH, f(YyH)(dY).

then the density of B = yyH is given by

IdetBltm Pf(B) (dB)

g(B -pm C ,, (in

The Jacobian of the transformation is

=- -pm Idet BI''jJ(Y -i B)j = I,,m

This is theorem 1 of [256].

Proof. This is proven in theorem 67 which is a replication of Srivastava's

derivation of the complex Wishart density. This theorem is stated here to keep

it in context with similar theorems. This is a complexification of Anderson

lemma 13.3.1 [26]. CFr(m) is defined in the section on helpful integrals.

Theorem 30 Let x = By be a linear change of variables from complex vector

x E C" to complex vector y where B is in Cn"". Let Re(B) > 0. Then

I1.(x --+ y)I = I(let B I'
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Proof. I do not have a record of the pedigree of this result or its proof. I

presume that is known already to many people.

x = By = (XR + ix1 ) = (BR + iBI)(yR + iyi)

= (BRYR - Bjyj) + i(BIYR + BRyI)

Thus, this is a change of variables of the form

XRBR - BI YR'

X( BI BR yi

The Jacobian is

J(x -- (B -By) dtdet(BR) det(BR+BIB'BI))

BI BR

= I[det(Bn)]2 det(I + Bý1B I Bý'Bj)j = ][det(BR)]2 det[I + (Bn1BI)2]]

= I[det(BR)12 det[(I + iBý'Bj)(I - iBR'Bi)]j = I[det(BR)]2. Idet(I + iBR1Bi)12

Idet(BR) det(I + iBý'B,)12 = jdet(BR + iBI)12 = Idet B12

By the inverse property, JJ(y -- x)j = jdet BI 2 , when it exists. When B =

BH then Idet BI = det B because the eigenvalues of B are real and det B =

l1 A?, by Goodman corollary 2.1 proof [92]. C1
i=1

Theorem 31 Let X = BY be a complex linear transformation between the

variables X E C" m , Y E Cnxr , and B E CnXfl. Then IJ(X --+ Y)I =

Idet B12m and IJ(Y --+ X)j = Idet BI-2 m. This is a complexification of Muir-

head [187] theorem 2.1.4.
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Proof. Muirhead provides a proof for the real case which uses exterior

products. I have provided a more traditional proof. We know that

IJ(X -4 Y) = IJ(Xl - Y 1)J(X 2 -4 Y2)... J(Xm -4 Ym)I

By theorem 30, IJ(X, Yk)l = Idet B12 . Thus fJ(X -- Y)j = Idet BI2 , and

IJ(Y -+ X) = Idet B1- 2",. [

Theorem 32 Let Z E Cnxm where the rank of Z is m. Let Z = H1 T where

HIMH1 = Im and T is an m x m upper triangular matrix with positive diagonal

elements. Let H 2 (a function of H1) be an n x (n - m) matrix such that

H = [H1 , H 2] is an Hermitian n x n matrix. In column vector notation, let

H = [hi,.-",hm,hm+,"..-,hn]

where {hil} belong to H1 . Then

(dZ)- T2n-m-i (dr1 , )(HHdH1 )

where
m n

(HHdH,) = A A (h Hdh,)
2=1 .j=i+1

and

(d~rH,) = {A[(h dhj) Tj + d71 ] A dT,

and A here is an exterior product operator. This is a complexification of Muir-

head's theorem 2.1.13 [187].
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Proof. The following is a complexification and expansion of Muirhead's

proof. First, recall by C. R. Rao lb.2(ix) [213] that Z can indeed be decom-

posed into H1 T where HItH 1 = I,,, and T is upper triangular with positive

real diagonal elements. Also, given a subunitary matrix such as HI, we can

always find a completion to H1 to form unitary matrix H.

Our goal is to find (dZ) in terms of (dT) and (dil1 ). What we will actually

get is something almost what we want, and this thing we get turns out to meet

our needs. We start by invoking theorem 21, Z = HIT implies that

dZ = (dH1)T + HjdT

Consider HHdZ, which involves our completed unitary matrix H.

SH[ HIH(dH1)T + H1HHldT HH[I(dH1 )T + dT
HH dZ = dZ = [

1-2[H (dHj) T + H2 H, dT H2 dH,

Note that dil1 here is a matrix, not an exterior product. Also note by H being

unitary that HIMH = Im and H2HH 1 = 0, the zero matrix.

By theorem 31, the exterior product of HHdZ is

(HHdZ) = Idet HHI2m (dZ) = (dZ)

So, if we find (H HdZ), we have also then found (dZ). Now, let us evaluate

(HHdZ). To do this with the least effort, we will make use of the partition and

a special property of the upper partition. The lower partition is simplest, so

we begin there.

H2H(dH1 )T = (hm+,, hm+2 , h,,h)H (dh1 ,dh 2 , dh,,) T
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hH 1dh1  hH+1 dh2 ... H dh

hH+2dh1  hH+2dh2 ... h Hdhm- + M X Tmnxm

h: dh h ... h Hdhm (n-rn) )xr

Recalling that for any matrix A, det A = det AT, and applying theorem 30 to

row j of H2H(dH1 )T we obtain Idet T12 A hfdhi. Thus the exterior product of

all elements in HH(dH1 )T is given by

2 [IdetT2A hdhi] =IdetTI
2(n--) A A hndh,

1Irn+ 1 i=1 j=nm+1 i=1

This also follows from lemma 4.

Now, consider the upper partition, H H(dH1 )T + dT. T is upper triangular,

and so is dT. Thus, the lower triangle (below the diagonal) consists only of the

elements of H H (dH,)T. Recall that HHH, = I.. Thus

d(HfHl) = d(In) = 0= [dH IH]HI + HH[dH1]

which is the zero matrix. This means that

H1dHj = -{dnH]H, = -[H H dH, ]H
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Therefore HH(dH1 ) is skew-Hermitian.

i Im(h• dhi) -[hu dh,]H ... [hH

hHdh i Im(hIHdh2 ) . [h.. d H 2]H

HgdHU = hHdh1  hn,'dh2  . [hHdh3 ]H

h$dh1 hmdh2  ... Im(h Hdhm) m X m

Note that for the case of real variables, the main diagonal consists of all zeros.

Now evaluate HIH(dH 1 )T, recalling that T is upper triangular. This matrix is

given below by columns. The first two columns are:

i Im(hHdhl)Tn i Im(hHdh,)T 12 - [hHdh,]HT22

(h1dh,)T11  (h/dh,)T12 + i lm(hgdh2)T 22

(hH3 dhl )Tll (h' 1dh,)T 12 + (1h3dh2)T 22

(hHdh,)T1 , (h$dh,)T1 2 + (h{dh2)T 22

The last column is:
m

Im(hHdhl)Tln - I [hH dhi] H T kim
k=2

(h•dh,)Tlm + i Im(hH dh 2)T2m - , [hf dh2]HTj,,
k=3

H [hHA Hk

(hHdh m)Ti,, + i Im(h dh3 )T3 m - k [hH dh3]t1Tim
k=1l hkT k=4

n--1 (h$dhk)Tkm + i lm(h$ dhm)Tmm
k=1

In forming exterior products, once a term (hj'dhi) has been included, re-

peated terms with the same index will cause that particular product to be
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zero. (hfdh,) A(h~dh,) = 0. Also notice that dZ A(dZ)* = 0. The exterior

product of elements below the main diagonal of Hj"(dH1 )T is also the exterior

product of elements below the main diagonal of H-'(dHi )T + dT. This is

- T (hTdhi) [T22 AA(A(dhi) .M-0
j=2 j=3

r n - 1 M

Elements along the main diagonal of Hf' (dH 1)T + dT have an exterior product

that is a bit more tedious. Since a typical element looks like

i Im(hh'dhi)Tjj + dTjj = (hýdhj)Tji + dTjj

the exterior product is

A [(hHdhj)Tjj + dTjj3

m

When this is expanded, it has one term that is A dTjj, and another of the form
j=i

(i Tj) A (h'dhj). We do not get the simple form achieved when hTdhj = 0
U~l )j=1

in the case of real variables.

Elements above the main diagonal have an inner product of the form

m M-i M
Adtij = A A dtij. Putting this all together, we obtain

n<3 i=1 j=[+M

IdetT12(-m) A (hqdhi) TI-k A A dhiX
i=m+l i=1 k=1 i=1 ji+

Ij=i i=1 j=i+l

A T{2k A Adhi) [(hHdhj)Tjj } A dT]d

=[ [i=ljA) [j---I i=1 j=i+A
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where we ignore sign changes, and we recall Tkk > 0,

]aL T,ý2k-mk] (d'rH1 )(H'dH1 )

where

(dr ) = +d(h'dhj)Tj. A A dT
, l]{ jAI Al m

and
m n

(HHdH1 )= A A (hidh,)
i=1 j=i+l

0

Theorem 33 Let Z E Cnxm where the rank of Z is m. Let Z = H1T where

HIH 1 = Im and T is an m x m upper triangular matrix with positive diagonal

elements. Let H 2 (a function of HI) be an n x (n - m) matrix such that

H = [HI, H2] is an Hermitian n x n matrix. In column vector notation, let

H = [hIh 2 ,...,hmhm+i,...,hn]

where {hj}j belong to H1 . Let A = ZHZ. Then

(dZ) = (det A)(2 n- 3 m)/ 2 { [(h dhj)Tj + dTjj] (dAL)(HHdHI) kii T,
1j=1 Ik=l

where (dAL) is the exterior product of elements of A below the main diagonal.

This is a complexification of Muirhead theorem 2.1.14.

Proof. This is a complexification and expansion of Muirhead's proof. From

theorem 32,

(dZ) = [ft Tk2-m-k] I [M) j + dT 3 ], [kk [(H~ffdH, )Tjj A ~j dTij (HHdH,)
k=i= jjiI
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Also,

A = ZHZ = (H 1T)H(HIT) = THH HHIT = THImT = THT

From theorem 27,

(dA) = 2m 1 Tk)(+(dT)
k=1

Note that A = AH. Thus the exterior product of elements of A consist of

the exterior product of the lower triangular submatrix of A. Partitioning that

exterior product into diagonal and below diagonal elements, we get (dA) =

(dAD)(dAL)

=(2m fiTkk)( dTkk) Tk2,Pk))( + dTu)]= 2k=1I T kk ~ l -k=1] i=1 j=i+l

We will substitute (dAD) into (dZ). We get (dZ) =

[1 -~ { [(Mhfdhi)Tjj + dTjjI } dTik (HHdH1 )
Ik,1j=l k= i<j

= (det A)(2 - 3m)/ 2  Tk{ [(h'dhj)Tjj + dTjj] (dAL)(HHdHl)

We do not get the nice form given in Muirhead [187] for the case of real

variables because the diagonal elements of HT(dH1) are not zero. Elements

of hh'dhi are purely imaginary. Hl"(dH1 ) is skew-Hermitian. 0
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Theorem 34 Let X = BYC be a complex change of variables where X E

Cnxm, Y E CnXm, B E CXn, and C ECmxm. Then

IJ(X -+ Y)I = Idet BI2m Idet CI2n

This is a complexification of Muirhead theorem 2.1.5, Deemer and Olkin [67]

theorem 3.6, and Arnold[31] Theorem A.16. This is also Khatri's theorem 2.3

[137].

Proof. This is a complexification of Deemer and Olkin's proof. Let Z = BY

and X = ZC. Then IJ(Z --+ Y)I = Idet BI12 and IJ(X --+ Z)I = Idet C12n by

theorem 31. Then

IJ(X -+ Y)I = IJ(Z -* Y)I" IJ(X --+ Z)I

This implies

IJ(X --+ Y)I = Idet BI12 Idet Cl2 "

and

IJ(Y -- X)I = Idet B1-2m Idet C1-2n

0
T

Theorem 35 Let X = Y be a transformation of com-

0 0 0 0

plex variables between X and Y. Let X, Y E Cnxn , and let be the

0 0
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identity matrix of rank r embedded in a null matrix of size k x n where r < k,

r < n. Then IJ(X -+ Y)I = 0.

Proof. Let X equal( I,. Orx(n..r) '~( Yr Xr Yrx(n-r) ' I( r Orx(k-r)

0 0

In forming the exterior product, note that dXn = OdY1',. The zero factor

causes the entire product to go to zero. Thus IJ(X --+ Y)I = 0. Alternatively,

if is n x n you could apply theorem 34. If k = n = r, then
0 0

IY(X --+ Y)I = 1. []

Lemma 7 Let X = BYBH be a transformation of complex variables between

X and Y. Let Y = yH and both X and Y in Cnxn . Let B E Cxn× be an elemen-

tary transformation matrix B = diag(1,. . . , 1, a, 1,.-., 1), with the element a

in the ith position. Then IJ(X --* Y)l = Ia11n and IJ(Y -- X) = Ial1- 2 . This

theorem was motivated by Deemer and Olkin's proof [67] of their theorem 3.7,

and by Stewart p. 43, Example 4.26.1 [f-59] which addresses operator matrices

for a real matrix.
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Proof.

Xll X*, ... X*' ... X.l

X 2 1  X 22  ... Xi*2 ... Xn2

Xil Xi2  "- X ... X*i

Xnl X.2 .." Xi .. Xnn

= BYBH = EIYE=

a

tn2

Y21 Y2x 2 ... "'" Yn 2

•i I "i2 . . y .. •n~

YnIY. Y2 ... Yni...' Ynn
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1

1
X

a*

Yj 1 Y2*1 ... a *Yi .. . Y*
1

Y1  •'2 ... a** 4
Y21  Y22  ... a*Yi*..Y*

aYi1 aY1 2 . a.2. 1 i..i aY:•

y.1 Y.2 . a*Yrni ... Y,,,

In this matrix, there is one element (Yij) with a multiplier of 1a1 2. There are

(i - 1) elements in row i multiplied by a as coefficients of Yik in the lower

triangle to the left of the main diagonal. There are (n - i) elements in column

i with a* as coefficients of (Yki) below the main diagonal.

Use wedge products to compute the Jacobian of the transformation. To

visualize the problem, first find the linear transformation for each element.

Xik = XRik + iXlik = ayVk = (aR + iat)(YRik + i~lik)

= (aRyik - aIYIik + i(aay,,k + aRYJk

XRlk Xlok
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Thus

dXlik aj -a dY~i2(dXRik ) ( aR -~ dylik

and

dXRik A dXi~k = (aRdyRik - -1d Yik)A/(ajdYRik + aRdylik)

=aRaidYRik Ad yRik + a' dYRik A d yIk - a'd Yik A dyRik -aiaRdyIikAdYk

R a+ ai)dyRikA dY~ik = laI dyRikA dylik

since by properties of the exterior product we know that dZ A dZ =0 and

dxAdY =-dYAdX

Obse ve hat X i~ k = XR ik - iXi~k = (aR - t )( ik- Z*Yhk)

=(aRyRik - aiIYik) - Z'(aIYRik + aRYJik)

Thus

dXRik =aRdRik - aldylik

dXi~k = aldyRik - aRdYi~k

When we take the wedge product dXik A dXa~ we observe that it goes to zero

because we have repeated indices in our wedge product of

(dyRik Ad(11ik) A (dyRik A dylik)
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Therefore we need only to consider the lower triangular and diagonal elements

in evaluating the Jacobian of this transformation.

i = aYi= XR3, + ?'~iX = (ciR + Z*AI)*(YR,, + IY13i)

= (aR - iaj)(Y~ji + iY'jj)

=(arRyRji + azylj) + i(aRyl1 i - aIYRjj)

dXRI, aRdYR3 i + ajdY1jjj

dX1jjj aRdyi1 i - ajd YR1,

dXRjZ Ad i = (aRdYR,, ± ajdyij,) ANaRdYJ,: - a~dYR,2 )

='yj Adjjad~j~Yj = (a 2±2 )dY~j~Y~ 1a2didt,

X~ii = IaI '= (XRii ± iX12 j) = IaI (R~ I Iiij) = 1e012 1,Ri

dXyRii = IaI2 dYRj

Yii E R because Y7 Y,". Therefore dA1, = dX,?12. Finally,

dAYRjkA d-ybk = "Rjk Ad dYlik

Thus

(dA ) = d.(R,1 /\ A dXu4 A /\- (Aj, (Eall) Y(00 2V )"-' ka'I(dY ) ka' (dY)

T[his lea(I tooi orc')ii.I. (N - "2 and( 1.1 (1 __ N j j1

0
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Lemma 8 Let X = BYBH be a transformation of complex variables between

X and Y. Let Y = -yH and both X and Y be in Cnx× . Let B E Cn'n be

an elementary transformation matrix B = diag(1,-. , 1, a, 1,.* . , 1), with the

element a EC in the ith position. Then IJ(X -- Y)I = Ial"2 and jJ(Y -4 X)l =

jaV 2n.

Proof. Follow the proof of lemma 7, taking into account that now Y =

_yH instead of Y = yH.

X = BYBH = E 1YEH =

Y11  -Y2* -a*Yi* Ynl

Y21  Y22  . a*Yii. Yn*2

aY 1j aY,2 ... ja ii... -ay

Y: •'n . ,..

YnI Yn 2 ... a*1"}ni ... Yn n

In this case, we still have (i - 1) elements in row i below the main diagonal

that are multiplied by a. We have (n - i) elements in -olumn i below the main

diagonal that are multiplied by a*. We have one element on the main diagonal

at position (i, i) that is multiplied by 1a12. From lemma 7 we note that

dXR2,, jiA j,, = Ia 2 d1'j A dYb,
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the difference in cases is in the treatment of the diagonal. Y1; is purely imagi-

nary because -Y = yH. Thus Yji E C\R. So

xi = 1al 2 Ygi = (XRii + iXii) = 1a12 (Y +i;±i) - i jal2 Yli

Thus

dXjjj = IaI2 dYlij = dX:,

since YRii = 0. For unaffected elements,

dXRjk A dXIjk = dYRjk A dYljk

Thus

(dX) = dXIAdXA". AdXiln = (IaI 2)i-1(IaI2),-i ja12 (dY) = Ia12n (dY)

Therefore

IJ(X --. Y)I = ja 2" and jJ(Y -* X)] = ja1-2,

0

Proposition 34 Let X = BYBH be a transformation of complex variables

between X and Y. Let Y = diag(YI,.. •, I') where Yi E R. Let X E Cfnl. Let

B E C"×n be an elementary transformation matrix B = diag( 1, -. , I, a, 1,- *, 1),

with the element a in the ith position and a E C. Then IJ(X -4 Y)J = Ja12

and (J(Y - X)l = 1a1 2 .
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Proof.

X1

X "xi

xn
YX,

11 1 1

a "as

Yn

Thus

(dX) = dYi A A dY,._.. A 12 dV A dYi+, A A d.;A = la12 (dY)

So we see that IJ(X -- Y)l = JaJ 2 and IJ(Y -- )l = la1-2 . 0

Lemma 9 Let X = BYBH be a transformation of complex variables between

X and Y. Let Y= ytH and both X and Y in C"n". Let B E Cn'n be an
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elementary transformation matrix

1

1

1

1

B= E2

1

a 1

1

The matrix B is shown here with the constant a in column i and row j. For

some conformable matrix Z, BZ has the effect of multiplying row i of matrix

Z by the constant a, and adding that result to row j. Then

iJ(X -- + 1Y)l = I = iJ(Y --+ X)j

This theorem was motivated by Deemer and Olkin's proof [67] of their theorem

3.7, and by Stewart p. 43, Example 4.26.3 [259] which addresses elementary

operator matrices for a real matrix.
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Proof. X =BYBH = E 2YE2J=

X 1 1 x• 1  ... • .

X21 X22 ... Xi ... Xn2

X, 1 X,2 ... Xn: ...

Y1 I Y211 ... Yj]j + a* Yil ... Y,•]

- j + 1 aYi, Yn 2 aj Y~+1~a1~~a 2~ + ay~i-~~~~~~~j +, +yi .... Y•+• jj + avjli + a*Y•, + ja2Y . /, V,

Y, I Y,2 ... Ynj + a*Yni ... yn

dXk! = dXRkL + ZdXIkL

Look separately at the real terms and the imaginary terms.

dXRk- dYRk 1
1 < k, k ý

dXIkI = dYlkI I

Form the wedge product of the real terms and the imaginary terms.

dXRkl A dXlkl = dYRk, A dYIkL

We get the same results when we examine dXZ*, except for a sign change. Thus

dXki A dXZ1 = 0. We therefore can restrict attention to the lower triangle plus
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diagonal portion of X.

dXjj = dXRjl + idXlji = dYjl + adYii

= (dYRij + idYjji) + (aR + iaI)(dYRjj + dY111)

= dYRjt + idYtjl + aRdYRIL - ajdYIj, + iatdYRij + iaRdYiit

dXRjj = dYRjj + aRdYR,1 - atdYtij

dXIjj = dYt3l + ajdYR,1 + aRdYtij

Note that

dXRl A dXi, A dXR3I = dYR,L A dyii, A dYRj,

since the other terms of dXRjL of the exterior product go to zero. Similarly,

dXR,Z A dX1 ii A dXRji A dX1 j, = dYRit A dY11 t A dYRjt A dY11 t

The terms with coefficients of a drop out. We thus can say

dXRj, A dX1 jt = dYRjI A dYijj +" -"

without having to keep track of the other terms. Note that

Xjj = Yjj + 2 Re[a*Yji] + jal2 y

is real. Thus

dXYj = dXRii+ dXj3 = dYRjj+ dYjjj + ,

0 0

and dXRj)J = dYRjj by the same reasoning.

Combining all the wedge products, we get (dX) = (dY), and thus IJ(X -- Y)I =

1 and JJ(Y -- X)j = 1.
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Proposition 35 Let X = BYBH be a transformation of complex variables

between X and Y. Let Y = -yH and let both X and Y be in Cnxn Let

B E Cn×n be an elementary transformation matrix B = E2=

1

1

1

a 1

The matrix B is shown here with the constant a in column i and row j. For

some conformable matrix Z, BZ has the effect of multiplying row i of matrix

Z by the constant a, and adding that result to row j. Then

1J(X - Y)I = I = IJ(" -- X)I

Proof. The proof is almost the same as for lemma 9. The matrix X looks

slightly different because it, too, now is skew-lHermitian. What is different is

that the sign of the coefficient of terms containing a may be (lilferent. For
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terms having an a that are not on the diagonal, the wedge product including

the associated variable will have been computed earlier. The noticeable change

occurs on the diagonal. The cell of interest is of the form

Xjj = XRjj + iXijj = Y j j + a*Yji - aYji + a 2 j ii

for i < j. We know Yjj and Yii are imaginary numbers. Of interest is that

a*Y.7 - aYj• = 2i Im(a*Yji)

is also imaginary. If i > j then the sign will reverse. Since we are interested

only in the absolute value of the Jacobian, we do not need to keep track of the

signs in the wedge product. So, the term Xii is imaginary.

Because all previous terms in dXjj have been included in a wedge product,

we can say dXi -= dXt= j = dYlii. Combining all the wedge products, we get

(dX) = (dY). Thus

IJ(X --+ Y)j = I.4(Y -+ X)I = 1

0
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Example 4 For the case of _yH = Y E M5 (C) and B = I + ae 4eT where

a E C, we get BYBH

Y1 I Y* - Yý - Y4 - a* Y2* - YI

Y21 Y22 -Y;2 -Y42 + a*Y22  -Ys

Y31 Y32 Y3 -Y3 + a*Y 3 2  -Y53

Y41 + aY21 Y42 + aY22 Y 43 - aY3* Y44 - aY2 + a*Y4 2 + a12 Y2 2  -Y5A4

Y5 1  Y52 Y53 Y 54 + a*Y5 2 Y5

Compute (dX) in the order of

dX11 , dX 21 , dX 22 , dX 3 1 , dX3 2 ,

dX33, dX 4 1 , dX 42 , dX 4 3 , dX 44 ,

dX 51 , dX 52, dX53 , dX 54, dX 55

Taking advantage of dXkI A dXkl = 0, and following this order, gives us a

simple computation yielding (dX) = (dY).

Proposition 36 Let X = BYBH be a transformation of complex variables

between X and Y. Let Y = diag(I,-, -- , K), and let X , B E MX(C) where B

is the elementary transformation matrix B = I + aeieT. The constant a E C

is a complex number and Bi = a, where i and j are fixed. Then

IJ(x -+ Y)I = I = IJ(Y -+ X)I
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Proof.

x,

xj 0 0 X1,

o 0

0 0

x.. 0 0 Xi

(Y,
Y. 0 0 a*Yj

0.* 0

0 0

aY, 0 0 Y1 + la2Y

t'n
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In the equation above, only two off-diagonal elements are non-zero. In evalu-

ating the wedge products we have

dXA ...AdX, = dyi A ... AdY_

where 1 < i < i - 1. Thus, when we get to including dX,, we see that dX3 has

already been accounted for. Therefore, dXi = dYj and IJ(X -- Y)l = 1. Thus

[J(Y --+ X)lI = 1. El

Lemma 10 Let X = BYBH be a transformation of complex variables between

X and Y. Let Y = yH, and let X,Y,B E Cnn. Let B be an elementary

transformation matrix

1

1

0= ".. 1 E

1B =E 3

0

1

1=
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The diagonal of matrix B has a zero at positions i and j. Said differently, Bii =

0 and Bjj = 0. B has off-diagonal ones in positions (i,j) and (j,i), so that

Bij = 1 and Bji = 1. For some matrix Z, BZ has the effect of interchanging

rows i and j. The Jacobian of this transformation is IJ(X -- Y)I = 1 and

IJ(Y -+ X) = 1. This theorem was motivated by Deemer and Olkin's proof

of their theorem 3.7 [67], and by Stewart (p. 43,) example 4.26.2 [259] which

addresses operator matrices for a real matrix.

Proof. X = BYBH =

jI:1 nI

Yi I ... ' ...

Each element in X is an element in Y. (dX) = (dY). Therefore IJ(X •* ")I =

I and consequently !J(Y --- X)I = 1. 11

Lemma 11 Let X = BYBH be a transformation of complex variables between

X and Y. Let Y = _yH, and let X, Y, B E CG'<'. Let B be an elementary

transformation matrix that interchanges rows. 'Fhen

IJ(X --+ Y)I = 1 = IJ(" X)I
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Proof. B is merely a permutation of two of the vectors in (el, e2,., en).

Thus BYBH is merely a symmetric shuffle of the elements of Y. At worst,

you only get sign changes in the wedge products. We are only interested in

the absolute value of the Jacobian, so the sign changes are of no interest. C

Example 5 Let -_yH = Y E M 5(C) and let B = (ei,e 4 ,e 3, e2, e5 ). Then

BYBH

Y 1  - Y41; - Yj - Y2 - Y5

Y4 1 Y44 Y43 Y42  -Y54

Y1 -'43 Y33 Y32  - Y*3

Y21 -Y 4*2 -1's; Y22  -Y 5*

Y51  Y54  1"53 Y52 Y55

Proposition 37 Let X = BYBH be a transformation of complex variables

between X and Y. Let Y = diag(I 1 , Y'2,-. , Y,) and let X, Y, B E Cnxn. Let

B be an elementary transformation matrix

B = I- -cT ef + C,)T + e4'

Then

IJ(X -- Y)I I = I.I(Y " X)-



457

Proof.

x,

Xi

xi

xx

y1

Yi

Y.

Except for a sign change due to the permutation, the wedge products are

identical. Thus the Jacobians are the same.

1J(X -* Y)I = 1 = IJ(Y --* X)I

0

Theorem 36 Inverses of Elementary Transformations.
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Table C.3. Elementary Operator Matrices

Lemma Operation Operator Remark

7 Scaling matrix. El = I + (a - 1)6ii a is in position i

9 Rowj +- Row, + aRowj E 2 = I + ab3 ,j a is in position (j, i)

10 Swap Rowi and Rown E3 = oij(ei,'." ,e,) Swap rows of I

Let P denote the inverse of E. (This unusual notation is of temporary

value in the conclusion. Once the conclusion is made, the bad notation can

be forgotten.) Define elementary operator matrices El, E 2, E, as in table C.3.

The exhaustive formula for each is given in the lemma indicated in column

1. oii(') is the permutation that exchanges elements i and j of the argument.

With these definitions, we note that the following relationships hold between

the elementary matrix and its inverse.

P, = (Ej)-I is like El with a reciprocal of the multiplication constant, a

P2 = (E 2)-1 is like E 2 with the sign changed on the multiplication constant, - a

P 3 = (E 3)-' = E3
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An explicit definition follows.

-1

1

1

(E)1= a

1

11

1

1

1
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-1

(E2)-' I .

1

1
- a .. ... o..

-k2
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-1

1

0 ... 1

1

0

1 . .. 1

1

1

0 1

Thus, each elementary transformation has an inverse. The proof is by simple

matrix multiplication.

Proof.

ElEk =I, E 2 E2 =I, E 3 Rt3 =I

0
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Theorem 37 Let A E F"Xn,m > n, be a matrix over field F (real or com-

plex), of rank r < n. Let E1 be an elementary transformation matrix that

multiplies a row by a constant when A is premultiplied by El. Let E 2 be an

elementary transformation that adds to one row some constant multiple of

another row, when A is premultiplied by E 2. Let E 3 interchange two rows of

A when A is premultiplied by E 3 . Let the notation of a superscript, such as

EikA, denote that matrix A is premultiplied by a set of k different elementary

transformation matrices of type i. Then (i)0
E3 -r ErE2AE3r =

0 0

for appropriate choices of { E}. The concept is simple and the proof is tedious

and thus omitted.

Corollary 6 If
/r 0

E-r Er E• nAE3- =K :)
0 0

as stated in theorem 37, then

0 0

Theorem 38 Let X = BYBH be a transformation of complex variables be-

tween X and Y. Let Y = yH, and let B,X,Y E Cnxn and let rank(B) = r.

Then IJ(X-- Y)I = IdetBI2n if r = n, and is zero if r < n. Likewise,

IJ(Y -* X)I = Idet BI-'.
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Proof. From corollary 6, B can be written as

0 0

where the mark above the symbol indicates a matrix inverse, the superscript

indicates the number of such matrices, and the subscript indicates the type of

elementary transformation matrix. Then

X=E(I,. O)[-r r• ( 0I)

0 0 0 0

Now, apply the theorems that describe the Jacobians of individual elemen-

tary transformations, noting the pattern as suggested by Deemer and Olkin

theorem 3.7 [67]. The subscript to the left of a matrix in the notation to follow

is merely an index.

Y3 =(n-r 3 ) ... (2 L3 ) (1 E3)Y(E 3)' (2 3)' (n-rE 3)H

J, =1
J2i=1

JF=I
Jn-r =1

IJ(Y3  Y)I = Jn-- ..- gJ2 J1

Yr- Y3

0 0 0 0

By a previous theorem,

{ 1, if r = n
IJ(Yr Y 3)o

0, otherwise
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If IJ(Y, Y3)1 = 0, then IJ(X --- Y)j = 0 because jJ(X --+ Y)I is the product

of all the intermediate Jacobians. By lemma 7 we get

Yi =(tRl)... ( 2 A 1 ) (E)Y(E 1 )H (2El)H '(tEl)H

Ji =1b, 12n

J =lbr 12n

Thus
J(Y Y) =1Ji I b2n

=== ai

where ai is the complex constant multiplier appearing in the diagonal of the

ith elementary transformation of type El. Finally,

X =(nE 2) ... (2EA) ( 1R2)y 1(1 k2 )H (2P )H ... (.E2)H
J1=1

J2 =1

Jn=1

Therefore

IJ(X --+ Y0) = 1

IJ(X - Y)I = IJ(X * Y1)j" IJ(Y1 -- Yr)" IJ(Y• - Y3)1 IJ(Y3  Y)I

I b,I 2", if r =n
- = 1{, otherwise

Now, consider the determinant of B.

det B = det[L' Erf" r -r ( ) 0

0 0
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= det(E2•) det(!7') det(E3-r ) det ( ) det(e'n-r)

0 0

(r b-r 1, if r =n n- 1 i if r =n
--1 bi (-I)"- (_ 1) -r = -1

0, otherwise 0, otherwise

(det B)(det B)* = IdetBI2 = 1b i bi = Jbib
i=1 i=l

Let B be of full rank r = n. Then

n

IJ(X . Y ) = TI = Ib I2 " Idet BI21
i=1

Also, IJ(Y -- X) = Idet B1-2,.

Note that this theorem is for matrices that are unstructured. When B

has a special 4tructure, such as being triangular, then that structure must be

accounted for in determining the Jacobian.

Corollary 7 Let X = BYBH be a transformation of complex variables bt-

tween X and Y. Let Y = yH, and let X,Y, and B be in Cnx× . Let B be

unitary. Then

IJ(X -- ) = 1 = IJ(Y X)-

Proof. From theorem 38, IJ(X -- Y)l = Idet BI2". Recall that the deter-

minant of any unitary matrix is 1. Therefore

IJ(X -+ Y')1 = 1 = IJ(Y --+ x).
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0

In particular, when considering the eigenvalue decomposition X = UA 2UH,

we see that JJ(X -- A') = 1 and IJ(A2 -+ X)I = 1 where U is a fixed unitary

matrix.

Theorem 39 Let X = BYBH be a transformation of complex variables be-

tween X and Y. Let Y = _yH, and let X,Y, and B be in Cnxn. Let

rank(B) = r. Then IJ(X -- Y)f = Idet BI211 and IJ(Y - X)I = Idet B1-2n

when r = n. When r < n then IJ(X -- Y)j = 0. This is a complexification of

Muirhead's theorem 2.1.7 [187], which is stated without proof.

Proof. If Y = -yH then the diagonal of Y is pure imaginary. Thus, in

following the proof of theorem 38, we note that

B = nrk~n-r( Ipo)
0 0

where the accent on top of the E indicates matrix inverse, the subscript indi-

cates the type of the elementary transformation matrix, and the superscript

indicates the number of matrices of that particular type. Then

1, 0 1, E0- HI

X = E2 (i~r ) 'kfn-ry (Lflr)H (Ljn-r)H (kr)H (jH
0 0 0 0

To help compute the Jacobian, expand the matrices, subscripting the specific

matrices on the left. Let

Y3= (n -r P 3 ) .. (2P 3) (1k 3) Y (1 A73 )H" (2L 3) H... (nk) H
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From lemma 11 we know that the Jabobian IJ(Y3 -+ Y)I = 1. Now, let

1,= 0 ,

0 0 0 0

We know

1, if r = nIJ(Y, - Y) { 0, otherwise

Suppose r = n. Consider Y1 next, with lemma 8. Let

Y 1 -(,r 1 ) -- ( 2 E 1 ) (IE 1 ) I ()H I (2) (l)

Ji =Ibl 12n

Jý =-b2 12n

Jr=br 12n

Thus
r r

IJ(Y1 -- Jr) = 1"I J=- H ibi2n
i=1 i=

Finally,

x =(n (t2) (2k) (Ik) yi (IA)" (2 A 2)H... (n) H

We see that IJ(X --+ Y)1 1. Putting it all together,

IJ(X --+ Y)I = IJX - YI1)I" IJY1 -, JT)I flJ(Y --+ •3)" IJY( -- Y)I

S1 I bi for r = n

0, otherwise
n

From the proof of theorem 38, if rank(B) = n, then Idet B12 = -I bij2"• Thus
i=1

IJ(X --- Y)j = Idet BI2n and IJ(Y --- X)I = Idet B1-2 . 0
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Discussion. In Muirhead's text (pp. 58-59) [187] attention is restricted

to only real matrices. Thus the diagonal of Muirhead's Y = -Y' is zero.

Compared to Y = yT, his skew-symmetric matrix has fewer algebraically

independent variables. The effect is that the Jacobians for BYBrT for the two

cases are different.

The complex case is simpler. The Hermitian Y has pure reals on the

diagonal, whereas the skew-Hermitian Y has pure imaginary numbers on the

diagonal. The Hermitian and the skew-Hermitian matrices have the same

number of algebraically independent variables. The fact that the Jacobians

turn out to be the same in the complex case is thus not inconsistent with this

observation.

Corollary 8 Let X = BYBH be a transformation of complex variables be-

tween X and Y. Let Y = -yH,and let XY, and B be in Cn'n. Let B be

unitary (B" = B-'). Then IJ(X- Y)I = 1 = JJ(Y - X)I.

Proof. From theorem 39, IJ(X -- Y)l = Idet BI2 . Since B is unitary,

det B = 1. Therefore

IJ(X -+ Y)I = I = IJ(Y -* X)I

0
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Theorem 40 Let X = Y-1 be a complex change of variables between X and

Y. Let X,YE Cnxn . Then

IJ(X --+ Y)j = Idet X12n

This is a complexification of Muirhead's theorem 2.1.8 [187].

Proof. This is a complexification of Muirhead's proof. X = Y-1 implies

YX = I. We compute the matrix differential of this according to theorem 21

to find that

(dY)X + Y(dX)= 0

This implies

(dY) = -Y(dX)X- 1 = -Y(dX)X-H = -X-'(dX)X-H

By theorem 38, 1J(Y --+ X)I = Idet X 1 2 2n. Therefore IJ(Y --* X)I = Idet XI- 2"

and IJ(X --+ Y)I = Idet XI 2n. ''
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Appendix D

DISTRIBUTIONS, PART I

D.1 Complex Normal Distribution Introduc-

tion

A derivation of the probability density function for the vector complex dis-

tribution is given by Wooding [293] for the zero mean case. This is the form

used by Goodman [92]. The most complete notationally consistent summary

of basic results readily available are given by Anderson (problem 3.64) [26]

and by Monzingo and Miller (appendix E.2) [185]. I strongly recommend that

Goodman [92] be used as the source reference from which other results are

constructed. He is a careful author.

Close reading of the literature is required if results of papers are to be

compared on an equal basis. In particular, pay attention to the following

issues. Are the results for the complex case being presented in terms of real or

complex variables? Is the assumed covariance matrix of special form, or is it

general? Answers to these questions will explain the variations in formulations

of the characteristic function, as well as possibly other results.

The key to understanding the complex characteristic function is that each

complex random variable can be thought of as two paired real random vari-
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ables. Since a characteristic function is a special type of expected value, the

integration of the associated density function must be carried out over all the

space its random variable is defined for. Hence, the integration must be carried

out over the entire complex plane. Equivalently, a double integration over R

is required.

Not all vector complex normal distributions are the same. We are con-

cerned about a very special complex normal distribution which is motivated

by signal processing needs. I will follow the explanation provided by Goodman

[92].

D.1.1 Definition of a Vector Complex Random Vari-

able

A complex normal random variable is a complex variable whose real and imag-

inary parts are bivariate Gaussian distributed. Let Z = X + iY be a p-variate

column vector complex normal random variable. A p-variate complex normal

random variable

Z1

Zz

ZP
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is a p-tuple of complex normal random variables such that the vector of real

and imaginary parts

X1

Xp

Y1

Yp

is a 2p-variate real normal random variable with a special covariance structure.

Wooding provided the following explanation. Consider

ZM(t) = X,(t) + iYM(t)

This can be written in the form

Z.,(t) = Z(Cnk - idnk)exp{iOk(t)}
k

where the coefficients Cnk and dnk are real. This complex Fourier series arises

in numerous fields, particularly in theory related to time series. Expanding

this into its real and imaginary parts yields

X,(t) = T [Ck cos(Ok(t)) + dk sin(Ok(t))]
k

Y,(t) = , [C.k sin(Ok(t)) - dnk cos(Ok(t))]

The Xi and Yj are in phase quadrature. (Note: Wooding's Y,,(t) is the negative

of what I am reporting here.) The covariance matrix satisfies the following
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relations.

£{XmX,} = £{YmYn}

C{XmY.n = -Ef I'nX

When £{Xm} = £{Yml = 0, the definition of the complex variates will not

involve Fourier series concepts.

When this restriction on the covariance matrix is made, reordering the ele-

ments of the real variable vector representation of the complex vector yields a

covariance matrix with a special pattern. The vector has a normal dis-
Y

tribution with mean vector and covariance matrix S =

Py F G

where G is positive definite and F = -FT (skew symmetric). Then Z = X+iY

is said to have a complex normal distribution with mean p = lix + ipy and

covariance matrix

E = £{(Z - p)(Z - P)H}

where H is the Hermitian (complex conjugate) transpose. Note that E is

Hermitian and positive definite. We can express E also as the sum of real and

imaginary parts, E = Q + iR.
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D.1.2 Proof that E is Isomorphic to 2S

This is Anderson problem 3.64(a) [26]. Let have a real multivariate
Y

normal distribution with mean vector (X and covariance S = ( F

Pv F G

where G is positive definite and F = -FT. Then, let Z = X+iY have a special

vector complex normal distribution with mean It = px + ipy and covariance

matrix

E = E{(Z - p)(Z - P)H}

where E2 is positive definite. Then

S= EI( - p)(Z - tl)H} = £{(X + iY - PX - ipy)(X + iY - Px - ipY)H

- £{(X + iY - lix - ipy)(XT - JYT - x + iT)}

= £{(XXT + iYXT - 1,xXT - itLYXT) - i(XYT + iyyT - IxyT - il~yT)

-(XPT + iyPTx -_ IxiTx -- ilyT) + i(XtT + iyv•T -_ xT -_ ipyYT)}

We expand and group all the real terms together and all the imaginary terms

together.

= E{(XXT + iYXT - IPxXT - itYXT) - (XpT + iyiT4 -_ IXT -_ ilyT)

-i(XYT + iyyT - pxYT - ilvyT) + i(X#4 + iypT - PxtT- iAYII)}

= q{XXT + iyXT -_,xXT - iUYXT - XT- _yiyT + PX•Tx + i,,YPT
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_iXYT + yyT + ipXyT _-yy + iX4T yP _ ipXIITs + Ity/41

- £{ XXT _ IIXXT _ XIAT + pX4 + yyT _-l y yP4 + ILYj

+ie{ yXT _ /SYXT _ yPT +, pT~ _ XyT + ,IXyT + x,4T _ P~XPT}

=Q+i'R

We look for a more compact expression for the real terms and the imaginary

terms.

-if( _,,Y)XT _ (y1Y~p _ (X ILX)YT + (X - X)T

-I( _ IAX)(X T 
-IT) + (y Y )y _ - /)1

+{(Y - -X ( -,y (y - 1 4)T

+,1((X -PX) (Y - PY) ) ( (Y - /y) (X -pIX) )T}

=Q~iR
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We recombine terms to see if we can get further simplification in our notation.

X (X-Px)-i(Y--py) (Y- )+i(X-Px) )T]

Now, express the complex vector as a partitioned real vector and compute

the covariance matrix.

T

F G C D (Y - m) (Y - P)

(={( 4zz) (X -X)T (Y - pv)T

(Y - ,Y)

(X - px)(X - px)T (X - px)(Y - pv)

(y - 11y)(X - jjx)T (y - y)(y - py)T

(X _ x)(XT I Tx) (X - px)(Yr- J•)

(y - p)(xr- pT,) (y - p)(yT - prT)

XXT - pXXT - XYp + LXYT XyT - vyrT - XyT + ,IxL4

YXT - 1pYXT - yp3T + pyT yyT - jyT- ypT + psylIT
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From the problem statement, the covariance matrix must have the special form

such that A = D and C = -B, Then A = D implies

£{XXT _ xT + ILxpT} = E{yyT _ tyVT _ yi'T T y

and C = -B implies

{yxT - ,iyXT - ypT~ + ltyI} = _-61(XyT _IxyT _ XII{ +/,xi4)J =

= q{_XYT + txYT + XIT- PxT}

Observe that C = BT, and by special requirements we impose C = -B. This

is possible since B and C are square matrices of the same dimension. The

special condition is possible in signal processing applications.

To demonstrate the required equalities, we know from the requirements

that we need

2G=A+D

2F=C-B

Thus we compute

2G = A+D = ,{xxT-pxXT-x+px +YYTyYT-Y/4+py Y}

Q = p{XXT - ,xXT - xITX + pXUT + yyT • -Y - yP4 +.UT

and

2F = C-B = {yxT-yXT--YpTYTxyT +pxYT± + -,xs14 }
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R = &{YXT - PYXT - YPTI + 4Uyl4T - xYT + 1 xYT + XpT -PXIT

We observe that Q = 2G and R = 2F. From this, we know that any element

in E will be double the value of the corresponding element of S. So, there is a

one-to-one mapping between every element of S and E. We thus say that E is

isomorphic to 2S.

D.1.3 Density of Vector Complex Normal Distribution

Anderson problem 3.64(d) [26] defines the probability density function for the

p-variate special vector complex normal distribution CNp(p, E) as

Pz) det I exp[-(z - P)HE-1(z -
f7z) •rdet(r,) 

I

The density for the special vector complex normal distribution is slightly

different from the real variables case in three ways. First, the exponent uses

the Hermitian transpose. Second, the exponent term is not divided in half.

Third, the term preceding the exponent does not have a square root.

Recall that S is a 2p x 2p matrix. Compared to S, each element of E is

multiplied by 2. From the theory of determinants, we know

[det(E)]2 = det(2S) = 22P det(S)

which implies

det(E) = 2P[det(S)]/ 2
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or

[det(S)]'1 /2 = 2-P det(E)

This result is different than theorem 2.5 of Goodman [92]. The 21r factor in

the leading term of the density function for the real case 2p-variate expres-

sion is raised to the =p power. Thus, the complete leading term in the

denominator is

(2r)P2-P det(E) = rP det(E)

D.1.4 Characteristic Function for the Standardized Vec-

tor Complex Normal Distribution

Derivation from the Standard Univariate Complex Normal Density

Function

Let the random variable z = x + iy have the univariate special complex normal

distribution with zero mean and unit variance CN1 (0, 1). The density function

is given by

f(z) e- 1e"12 -" =Z (X2+y2) (D. 1)

Let transform parameter be t = '-l-ir. Tie characteristic function is computed

by

40(t) = E{exp[i Re(tHz)]} = e j Re{(n-i'r)(X+it)l-Ie-(z2 +y2 )dxdy"co fo 00
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1- jj e(x2 +Y2)+i(,7x+T+I)dxdy _1 X2 x+ixdx) (j e-y2 +tydy)

To solve the integral ff. einx-X2 dx, note that the exponent can be placed

into the form of a perfect square by observing the following standard trick.

-_(X _ 1 iq)2 = -(X2 _ iX7 1 •772) = i7X - x 2 + 1 771
12 4 141

which implies that
1 2 12

i?/x - x = -(x - -i?)) - -7

Therefore

f-°ixxdo x[--•121 f 12

e dx = ] 0exp[-(x - i7)2 ]dx

The integral is in the form of fexpf-z 2 ]dz. Note that the function exp(-z 2)

is analytic everywhere in the complex plane. Thus f exp[-z 2]dz = 0. Consider

the contour given in figure D.1.

The closed path of integration that begins on the real axis at -K, follows

the real axis to +K, descends parallel to the imaginary axis in the negative

direction to K - i.ir, transits parallel to the real axis in the negative direction

to -K - li?7 , and the returns to the starting point by ascending parallel to

the imaginary axis to the real axis again at -K. Evaluating the integral along

this contour yields

e-d-dz = 0 = e- Z2dz + 2 e-Z 2 dz +J , e-z 2 dz + . eZ dz

= ex'dx +ij)2 e(tu) 2 du + e-("- I i) 2 du +
-K O 17/2
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Im

-K 0 __• K ,.
!" Re

-K-ill/2 K-ihI/2

Figure D.1. Integration Contour to Get Characteristic Function

where a different appropriate change of variables has been made for each in-

tegral to simplify the limits. In the second integral, let u = -i(z - K). In the

third integral, let u = z + l-i. In the last integral, let u = -i(z + K).

Examine what happens as K goes to infinity.

iim I e(K(K)2du= lim I
K-too Jo K-oo Io

< lim [-,u/2 d_(K2_,2, i du = 0
- K-00o 0O

Similarly,

lim 12° e(-K+au) 2du = l 0 e- -(Ku)2 du
Kd • 1 K-(oo IJ - I

lim 0e-(K2-u2-'2iKu)du < lim 0 e- (K2-'2) •e-2ih'u du =0
K-.oo lf,7/2 -- h--oo f n2III I
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The following integral is known by many. f+= e-• 2d_ = I is evaluated by look-

ing at its square and performing a rectangular to polar coordinate conversion.

I have not seen this trick used on any other integral.

(f 00 (j 2d) (fjW ew dw) =f f~ 00e 2 +w)xd

Let x =rcosO, w= rsinO, and dx dw =rdrdO. Then

12 = 4 -r 2 r dr dO = 4 e -r 2 r dr

= - e-r2 (-2r) dr = -- r r2 = - 7(O - 1) = r

Therefore, I = f+PO e-X2 dx =

Substitute these individual results back into the equation for e-Z 2dz.

Switch the limits on the remaining integral, thus changing its sign.

e- 2 dz = 0 = v/ + 0 - e0-(Ui7) 2 du + 0

Switching notation of dummy variables from u to x, we get

0 e-(X-½ii)
2dx =

Substituting this result yields

177
Sexp[ix - x2]dx = Vf exp[- 4

Continuing the back-substitution, we get the characteristic function

4b(t =ir(,~rxp-4 )(V'Wrexp[(_4I T !7r exp[li(1 4
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Finally, for the univariate standard special complex normal distribution, the

characteristic function is

4C(t) = exp[-1 It1 (D.2)

Derivation from the Real Vector Normal Characteristic Function

Let w = have a real normal distribution with mean vector p. =
Y fly

and covariance matrix S where G is positive definite and

F G

F = FT. Let z = x + iy have a special complex normal distribution with mean

p = •x + ilty and covariance matrix

E = E(z -p)(z - p)H} Q + iR

where E is positive definite.

The characteristic function of w is known to be

4%(t) = E{exp[itTw]} = exp[itT'pw - 1 tTSt]

where t = is a real vector. Then

= exp [i&T T)(TJlix 1 T TT (G -F)(7)

+ T Y F G T

-- xp ?7p,+ r11) -2 TF+TTG
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Regardless of whether the distribution is expressed as paired real vectors or by

complex vectors, the density function and the characteristic function should

always have the same value for the corresponding identical parameters. With

this in mind, let us examine similar forms with complex variables. Let T

71 + ir. Then

TH P = (77T -_ iTT)(l.X + i2 P) = 771p. + rTT, - irTpA + i77T Py

Thus Re(TH') = tT1u,. Now examine the covariance term.

THET = (77T - irT)(Q + iR)(77 + ir)

-- TQ7 + TTQT + rT R7 -_ 77T RT + i47T R77 + TT Rr - r TQ17 + IT Qr]

Recall that we proved R = 2F and Q = 2G. Then TT ET =

2,7TG2G, + 2rTGT + 2rT FTi - 27T Fr + i[29T F77 + 2rTFr -- 2TTG77 + 277TGr]

Comparing this with jtTSt, it is seen that

1 1 tTSt
1 Re(THfET) 

= 2

Since E is Hermitian positive definite, by theorem 119 it can be factored as

S= CCH. Then

THET = THccHT = (CHT)H(CHT)

which is real. Thus THET = Re[THET], and therefore the characteristic

function for the special vector complex normal distribution is

4, (T) = expfi Re[TH/P] - 1TH ET} (D.3)
4
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This differs from Anderson's result by the 1 in the covariance term.

D.2 Matrix Complex Normal Distribution

The matrix complex normal distribution describes the random data whose

quadratic form produces the complex Wishart distribution. In order to define

and describe the properties of the complex Wishart distribution, the definition

and properties of the complex Gaussian distribution must be understood. The

material that follows is a complexification of Arnold's Section 17.2 [31]. 1

have also used characteristic functions where Arnold used moment generating

functions.

D.2.1 Definition of the Matrix Complex Normal Dis-

tribution

Let Z = (Zij) be an n x p random matrix such that the {Zij} are indepen-

dent and each Zj is distributed according to the univariate complex normal

distribution with zero mean and unit variance. Symbolically, we denote this

as Zij - CNI(O, 1). The characteristic function from equation D.2 is

1
Oz,,(Tij) = exp(-I Tirij) (D.4)

For Z = (Zij),×p independent and identically distributed, then

qbz(T) = ----Iexp(-4T 1 ) =cxp[-4tr(THT)] (D-5)
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Likewise, the density function (from equation D.1) is given by

1n 1 H ]
f(Z) = fJI rI- exp(-Zi ZiJ) = - exp[- tr(ZHZ)] (D.6)

j=1 = " 7r Pn

Let A E CnXn, B E CpXr, P E Cmxr, and Y = AZB +,p. The symbol i

in statistics is often reserved to refer to the average or mean of a distribution,

and it is often (but not necessarily) a parameter in the distribution functions.

Then Y E Cmxr and

,by(T) = 4 AZB+p(T) = exp {i Re [tr(TH11)] I ýz(AHTBH) (D.7)

= exp {i Re [tr(THpt)] } exp {-- tr [(AHTBH)H(AHTBH)] }

= exp {i Re [tr(TH11)] - 41 tr(BTHAAHTBH)}

= exp {i Re [tr(T HP)] - tr(THAAHTBHB)}

Let

E = AAH and E = BHB (D.8)

These symbols have special meanings in statistics. The symbol E is the more

frequently used symbol, and it represents the covariance matrix of a distribu-

tion. When more than one covariance matrix is being discussed, the symbol

E- is often the symbol of choice. In the case of the matrix complex normal

distribution, Arnold [31] remarks that it helps to think of as representing

the covariance between the rows of Y, and E as representing the covariance

between the columns of Y. With these symbols defined, then

'Iy(T) = exp {i Re [tr(TH/t)] -1 tr(THETE)} (D.9)
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Y has a special complex matrix normal distribution with parameters Y, E,

and E. We denote this by Y - CNm,,(,, E). Note that this is not unique.

For arbitrary scalar a E C, it is true that

Y - CNmT(pI, E, E) = CNm,r(t,, 1--, aE). (D.10)
a

The parameter -E is often assumed known, and usually assumed to be the

identity matrix I,,. Note the dimensions on the parameters: !Lmxr, ZmXm, and

Proposition 38 If z - CN,(0, 1) then z* - CN,(0, 1).

Proof. Let z = x + iy. Then z , CNI(O, 1) implies the expected value

E(x + iy) = 0 which implies and £(x) = 0 and £(y) = 0. We also see that the

variance

var(z) = E[(z - 0)(z - 0)*] = E(zz*)

= i((x + iy)(x - iy)] = $(x 2 + y2 ) = 1

E(x) = 0 and £(y) = 0 implies £(x - iy) = (z*) 0 . Then

1 = £[(x + iy)(x - iy)] = E(zz*) =[z*(z*)*]

= E-(z" - 0)(z" - 0)*] = var(z*)

Therefore var(z) = var(z*). This completely defines the distribution. We con-

clude that

z -, CN1 (0, 1) # z* - CN,(0, 1)
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Proposition 39 Let Y - CNm,r(p,E, F). Let Y = (Yij), p = (pij), Z = (-ii),

and E = (Eii). Then £(Yi) = pij, var(Yij) = .. ii~jj, and cov(Yij,Y i. j . ) =

S• .This is the complexification of Arnold's theorem 17.1 [31].

Proof. This is a complexification of Arnold's proof. Let Zjj - CN(O, 1).

Then F(Zij) = 0, var(Zi2 ) = 1, and cov(Zij, Zi.j.) = 0 unless i = i* and

j = j*. Define matrices A and B by E = AAH, E = BHB. These factorizations

exist for Hermitian positive definite E and E as proven by theorem 119. Let

Y = AZB + P. Then Y -, CNm,r(i,,-yE,E) by construction. Element Yij is

given by
n P

Yij= Z AikZksBaj + 14j (D.11)
k=1 s=1

Then

cov(Yij, Yi.j.) - f [Yij - E(Yij)] [Yi.j. - 9(yi-j)* (D.12)

We consider the details of one of the arguments and note that the other argu-

ment has similar results.

n P nP

- (Yj = >. EAikZk, 8 B8 + j - E E AikZk.BB, 3 +/.Sii}
k=l s=l s=1

n p n P

= ZE Z AikZksBsj + piij - E AikE {Zk,} B5 j + pij
k=l a=1 k=l s=1

which implies
n P

Yij- £(Yij) = EE_ AikZksBoj (D.13)
k=l s=l

We use this to evaluate the covariance term of D.12.

cov(Yij, Yi.-.) = e [ AikZk5B]j E E AIjk.Zk.3*BS.j]
I k1s=1 I k*=l 30=1
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n p n p

= •Z •• • AikBjA-k-.B. 3 .× x E {Zk.Z;.,.}
k=1 s=1 k*=I s*=l

=0 except when k*=k, 8*=s

n p n p

= Z Atk sA*k Sj = itk-k 1: BaB* = i E
k=l1 =1 k=1 s=1

Therefore,

cov(Yij, Yi.j.)= EZj. (D.14)

The variance term is simpler to compute.

var(Yij) = cov(Yij, Yij) = E= iiEjj (D. 15)

since elements on the diagonal are in R.

By this theorem, then, the covariance between two elements Yij and Y,.j.

is just the covariance between the rows i and iZ multiplied by the conjugate of

the covariance between the columns j and j*.

D.2.2 Properties of the Matrix Complex Normal Dis-

tribution.

The properties studied here are the complexification of Arnold's theorems 17.2

and 17.3 [311, plus some corollaries motivated by these theorems.

Lemma 12 Let Z - CN,,.(IL, E). If r = I and E = a 2 (a scalar), then

Z - CNm(p, g 2=).

Proof. The characteristic function of Z from equation D.9 is given by

tz(<T) = exp [ Re (tr(7'",i)) - I tr(T"nTTE)]
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exp [iRe (tr(Tnp)) - 4 tr(T'[U2EIT)]

which is the characteristic function of CNm(p, o 2E) by equation D.3. This is a

complexification of Arnold's theorem 17.2(a), which was stated without proof.

Lemma 13 Let Z,,, CNm,r(jE). If a is a scalar, then

aZ - cNgm,r(a, Ja 2 -E, E) = CNm,,((au, a*=-, aE )

= CN,,,(ap, aE, a* E) = C N,r(ai, E, 1a1 2 E) (D.16)

This is a complexification of Arnold's theorem 17.2(b), which was stated with-

out proof.

Proof. From the characteristic function, we observe

4%,cx(T) = E {exp [i Re (tr[TH(aZ)])] I

= £ {exp [i Re (tr[(a*T)HZ])] } = 'Iz(a*T)

since a is a scalar. We continue by regrouping scalar a to obtain the results.

Since a and a* are scalars, they commute.

*z(a*T) = exp i Re (tr[(a*T)p]) - tr ((a*T)H=(a*T)]

exp [i Re (tr[TH(ap)]) - tr (TH(aE)T(a*E))]

These are the characteristic functions of the distributions cited in the results.

Corollary 9 Let Z - CNm,r(p, E, E). Then ZH - CNr,m(pH, E, ). This is a

complexification of Arnold's theorem 17.2(c), which was stated without proof.
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Proof. Let Z = AXB + p. Then ZH = BHXHAAH + UH where X ,

CN(O, I, I). The characteristic function of ZH is given by

'IPzH(T) = C { exp [i Re (tr[T H(B HXHA H + /IH)j)J

= exp [i Re (tr[THnH]) ]- {exp [i Re (tr[AHTHBHXH])] }

= exp [i Re (tr[TH IH)])'XH(BTA)

= exp [i Re (trfTnp"1'] exp [-_ tr[(BTA)H(BTA)I]

= exp [i Re (tr[THHn])] exp [-4 tr[AH THBHBTA]]

= exp [i Re (tr[T HpH])] exp [--' tr[THBHBTAAH]]

= exp [i Re (tr[THPH])] exp [-- tr[TH ETE]]

which is the characteristic function of the result, where E = AAH and E =

BH B as used earlier.

Theorem 41 (Very important) Let Z -'s CN,,r(p,., ,) where the matrix

dimensions are ZmxT, jumxr, =mxm, and E3 xr. Let Y = AZB + v where the

dimensions are Ynxp, Anxm, Brxp, and Vxp. Then

Y ,- CNn,p(v + AIaB, AEAAH, BHEB)

This is a complexzification of Arnold's theorem 17.2(d) [31], which was stated

without proof.
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Proof. From a practical standpoint for the future use of other people, this

is one of the most important results in this thesis. The characteristic function

is given by

4DAZB+ (T) = E {exp Ii Re (tr[TH (AZB + v)])] }

= exp [i Re (tr[THv])] E {exp [i Re (tr[BTHAZ])] }

= exp [iRe (tr[THV])] 0z(AHTBH)

= exp [i Re (tr[THv])]

x exp [i Re (tr[(AHTBH)Hn]) - I tr[(AHTBH)H=(AHTBH)i]]

= exp [i Re (tr[Tnv] + tr[BTHAI]) - 4 tr[BTHALAHTBHE]

= exp i Re (tr[TH(v + ApB)]) -1 tr[TH(A-AH)T(BHrB)]] = Oy(T)

(D.17)

which is the characteristic function of the result.

Theorem 42 Let Z - CNm,r(p,E, E) where the matrix dimensions are Zmxr,

Pmxro, -mxm, and F,×,x. Partition the random variable and parameters as fol-

lows. Let Z = (Z 1 ,Z 2 ), p = (Pl, 2), and E = where Z1
E21 E22

and it are m x rl and El is rl x rl. Then Z1 , CN.,r,(pl,E, Ell) and

Z2 -" CNm,(r-rl)(P 2 ,--,FI 22 ). This is a complexification of Arnold's theorem

17.2(e) [31], which was stated without proof.
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Proof. Let B = .Then
0

Z, = ZB - CNm,ri(yB, E, BHEB) = CN.,r, (pi,,E, Ell)

by theorem 41. Similarly, let D = . Then

Z2 = ZD - CN,,(,_,,)(piD, E, DH ED) = CNm,(r-r,)(A12, -E, E22)

Theorem 43 Let Z - CNm,r,(i, E, E). Partition the random variable and

parameters as follows. Let Z = (ZI, Z 2), E = (E12,/2), • =

r21 E22

and T = ( T2 ). Let E # 0. Then Zl and Z2 are independent if and only

if E12 = 0. This is a complexification of Arnold's theorem 17.2(f) [31], which

was stated without proof.

Proof. Working with the characteristic function, equation D.9, we see that

o =z(T) exp [iRe (tr {(Ti: (l ,P2)})

= ex T2 ll E12

=exp iRe Itr II
I ~ T2'"PI T~2) J)
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11

_- exp [, Re (tr[aS.Hl)- • tr[•-Tl2Hp2 ])
42 4

Sexp [i Re (tr[Tii]) + tr[Ti--Ti2,U]])

×exp i Re (tr[T2H/ 2]) - Htr[T2"E I] x

1 tr[T2 T I x

"x exp 1-4 tr[TjH"7T2E 2 l] - 4trT

= ,zj(T1 )4z 2(T2 ) if and only if E12 = 0 (D.18)

By the Neyman-Fisher factorization theorem, Z1 and Z2 are independent if

and only if E12 = 0.

Theorem 44 Let Z -' CNm,r(ii, E,: E). Partition the random variable and

parameters as follows. Let Z = (Zp, = (pi, JL2), E = . Let
E'21 E'22

E22 be nonsingular and define -11.2 def E-ii 12221'E21. Then the conditional

distribution of Z, given Z 2 is given by

(ZI I Z 2 ) - CNm,,, ((1 + (Z 2 - 21 2 1 ),,E(l - 22

= CNm,,, ((Pl + (Z 2 - P 2 )E1)E2l),E, El. 2 )

This is a complexification of Arnold's theorem 17.2(g) [31], which was stated

without proof.
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( o 0
Proof. Let B = and consider the transformation

Y = (YI,Y 2 ) = ZB = (Z 1 ,Z 2)B

Then

(Y 1,Y 2 ) = (Zl - z22E1, Z2)

Thus 4uB = (/• -/•-'E21,92). The covariance is found by

T hus B = (It 112F,2 )(y1~1
0 I E21 E22 -E-IE21 I

2- 1 F122~21 + FIH F-HEy2E--E1 E12 E lH2

-E_ (21 - -22122"1 21 E2 )

0 E 2 2 /
where E - EH. By theorem 41, (Y, Y2)) CNm,r(,(B, E, BHB). By theorem

43, Y1 and Y2 are independent. Since Y1 and Y2 are independent, then the

density factors as

f(Y 1 IY2 ) - f(Y 1,Y 2) - f(Y 1 )f(Y 2) = f(Y) (D.20)
f(Y 2 ) f(Y 2)

Thus

(Yi IY2) " CNm,r (( /, -/ 21),E, (Ell - 12•-• 21)) (D.21)
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Recall that Y2 = Z 2 and Y1 = ZI - Z2E22E 221 which implies

Z1 = Y 1 + Z 2 '2 121

In the conditional density f(Y 1 I Y2 = Z2), Z 2 is a constant. Apply theorem

41 to find f(Z 1 I Z 2). Here, v = Z 2 E 21 21. The row and column covariance

matrices remain the same, and the mean becomes

2- 2 2 21 + Z2 3l 1 E21 = ILI + (Z 2 -,2EE1

Thus

(Z, I Z 2) CN.,,r ((p' + (Z 2 - • 2) •), E, ( 1 - ,122, 2,))

SCN,,,, ((pI + (Z 2 - P 2 )21 E21), E,1.2) (D.22)

Corollary 10 Let Z - CNm,,(li, E,). Then Z* - CNr,m(iu*, *, E*). This

is a variation on the complexification of Arnold's theorem 17.2(c) [31].

Proof. Let X - CN(O, I, I) and Z = AXB + p where E = BHB and

E = AAH. Then Z* = A*X*B* + p*. Using the characteristic function, we see

4 z.(T) = 6 lexp [i Re (tr[TH(A*X*B* + p*)])]}

E e {exp [i Re (tr[THA*X*B* + THp*])] }

= exp [i Re (tr[T'p*]) ]C {exp [i Re (tr[THA X*]B*)] }

=exp [i Re (tr[Tflp*]) ] E{exp [i Re (tr[(B-THA-)X-])]}
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= exp [i Re (tr[T H *])] j {exp [i Re (tr[(ATTBT)HX*])] I

= exp [i Re (tr[Tjz])] 4bz.(A TTB T)

By proposition 38, 4z(T) = ,z.(T). Thus

,t z. (T) = exp [i Re (tr [T HP*1)] 4)z(A TTB T)

By equation D.5 we find that

'Ibz.(T) = exp [i Re (tr[T HPi)] exp j*~trI(A TTB T)H (A TTBT)1]

= exp [i Re (tr[THY-])J exp [-4 tr[B*TH A*ATTBT]]

=exp [i Re (tr[THp*])] exp [-4 tr[THA*ATTBT B*]]

=exp [i Re (tr[T Hp*])] exp I- tr[T HE*TF2s]]
11 tr[-4 1,]

This is the characteristic function of a variable distributed as

Z* - CNr,,(p 5 , *, ,'*)

Theorem 45 Let Z - CN,,r(p, E, E) where the matrix dimensions are Zm×x,

tAmxr, -Emm, and Er.ra Partition the random variable and parameters as fol-

lows. Let Z = ( )• = ( and-== where Z, and i1t
Z2 /12 =21 =-22

are mi x r and Ell is mi x mi. Then Z, - CNmn,,(pi,--i, E) and

ZT ii CaN(.,vrio),n(on2, c i2o, o f )

This is a variation on a complexification of A rnold's theoremn 17.2(c).
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Proof. Let A = (I,, ,0). Then by theorem 41,

Zi = AZ - CNm,,r(Ap, AEAH, E) = CNmi,r(yj, E 1, E) (D.23)

Likewise, Let B = (0, Im-mm). Then again by theorem 41,

Z2= BZ "- CN(mm,,),r(BlI,BEBH, ,) = CN(,-m,),T(/I 2,-':22,E) (D.24)

Theorem 46 Let Z - CNm,r(i,-', E). Partition the random variable and

parameters as follows. Let Z = = I

Z2 112 = 21 .22

and T = . Let Eý6 0. Then Z1 and Z2 are independent if and only if
T2

- 12 = 0. This is a variation of a complexification of Arnold's theorem 17.2(f)

[31].

Proof. The characteristic function of Z is given by

- tr (T ' TH) 11 1 2
4

721 e -t( 22 T 2

_4 tr I I(TIn-.l + T2H - 2T1 T+ TJ"7-"I2 T2 + T2H7-:2 2T2) Z}
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= Ozj(T1)iz 2 (T2) if and only if -12 = -H = 0 (D.25)

Thus by the Neyman-Fisher factorization theorem, Z1 and Z2 are independent

if and only if =-12 = 0.

Theorem 47 Let Z - CNm,r(1 ,, E, E). Partition the random variable and

parameters as follows. Let Z = ( I P =( ,).-= . Let

Z2 e2 21 = 22
. ~~~-... 22 21 Thenthcodina-22 be nonsingular and define = 11.2 def E-11 - =co=ndit

distribution of Z1 given Z2 is given by

(ZI I Z 2 ) - CN. 1,r ((II + Z21 -- 2
1(z2 - /2)),(E, 1 - Z,2.-2- Z-2), x)

= CNm,,. ((ILI + = 21 =-2 '(Z 2 - 112)), =11.2, E)

This is a variation on a complexification of Arnold's theorem 17.2(g) [31].

I -= -- I

Proof. Let A = ) and consider the transformation
0 1

Y= =AZ=A
Y2 Z2

Then

(y) (z1 Ei:EZ 2 )(D.26)
Thus the mean of the transformed random variable is

II -12Z. 22 /12Ali
112
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and its covariance is

AEAH= (-12 -22 ' ( -11 -12 I 0

-4 0 1 2 1 22 ) -_--,12

• 11 -- -12- 22 = -21 --12 -- = -12 •,22 -= 22 1 0

-21 •22-H-H I

-- HH =-I= --H22 =-12

--12 2 2 -21 "-12- 2 2 -'12 + -'12--22 -'22--22 -12 -12 - '12-22 -'22

"-21 -22 -22 -12=22

= 0 22 ) where - -H (D.27)
0 =- 22

By theorem 41, ( CNm,r(Ay, AEAH, E). By theorem 46, Y1 and Y2

Y2

are independent and therefore

f(Y 1 I Y2)- f(Y,(,Y) - I)f(Y) f(Y1) (D.28)
f(Y 2) f(Y 2 )

Thus
- -1 -- • -1 (.9

(Y1 I Y2 ) - CNmi,,,((Pi - = 1 2 2 ), (=21 - -, 2 " 22 ), ) (D.29)

Recall that Y2 = Z2 and Y1 = Z1 - 12 2 Z2 which implies Z =.

In the conditional density f(Y1 I Y2 -- Z2 ), Z 2 is a constant. Apply theorem

41 to find f(Z 1 I Z2). Here v = = 12-=2 Z2 . The distribution mean is

P1 - --- ��Z 2 IP2 + =-1 2 =--Z 2 = pA + =1 2 =-'(Z 2 - P2) (D.30)
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Therefore the conditional distribution of Z1 given Z2 is

(Z 1 I Z 2 ) - CNmi,r((Pl + : 12E72-(Z 2 - /2)), (. 1 1 - ':' 12 -1 2 1 ),2-•) (D.31)

Theorem 48 Let X - CNp,m(pl,_l, EI) and Y - CNp,m(p 2, B2, E2) be in-

dependent matrix complex normal random variables of the same size matrices.

Then the distribution of the sum X + Y is given by

X + Y - CNpm (Pi + P 2, EI + E 2, El + E2)

This common theorem was supplied by me.

Proof. Since X and Y are independent, their joint distribution is given byX ,0 10 E 0 ]
Z =)~CN2p,2[( ,)(

0 Y 0 J12 0 = 2 0 E2

Define A = IP ) andB= ( . Then AZB = X + Y. By theorem

41, the distribution of X + Y is

X + Y CNp,m (/I + /1 2, Ei + E2, El + E2)

where we observe

A( It, ) B)(=0 2) ( /1+2

0 112 0 P2 IM

This is a p x m matrix. Also,

A )AH 1 El 2
0 --2
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and

0 E

D.2.3 Specialization to the Vector Complex Normal

Distribution

We specialize a very few results to the vector complex normal distribution since

this is the form most engineers finish there statistical preparation with. Let z =

ZI

be an n-dimensional random vector such that the zj are independent

Zn

and each element is distributed according to the standard univariate complex

normal distribution CNI(0, 1). The characteristic function of the individual

elements is 4,,(t) = exp [tvtj] . For z = (za), independent and identically

distributed, then the characteristic function of the vector random variable is

given by

4t= 1"I exp -t[tj = exp - tHt (D.32)
j=i -

The density function for the vector random variable of independent and iden-

tically distributed univariate complex Gaussian elements is given by

f(z) = 1exp 1-ZzJ - exp [-zHzj = - etr [-zHz] (D.33)We denote th zrn n r n

We denote the standardized vector complex normal distribution by CNn(O, In).
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Z1

Corollary 11 Let z = C - CN,,(0, I.), A E Cm
xen, p E Cm , E = AAH,

Zn

and y = Az + p. Then y - CNm(p, E).

Proof. By the transformation y = Az +,p, we see that y E C'. By theorem

18 from properties of a characteristic function, we see that

Oy(t) = 'tA.+M(t) = exp {iRe [tHPl] } $(AHt) (D.34)

=exp {i Re [tHp }j exp [1(A Ht)H(AHt)] =exp { i Re [tHv] - 'tHAAHt}

=exp{iRe[tHp] -- ltH-tj

Thus y -, CNm(p, E). The characteristic function presented here differs from

that given by problem 2.66 of Anderson [261.

Corollary 12 Let

z z, z) CN.(0O, In)

B E Cnxp

v= v , ... tp ) E CP

E = BHB and y = zB + v. Then y -, CNp(v, E).

Proof. For independent and identically distributed (zj)n, we get the char-

acteristic function

(D''(t)= Hjexp [t;t] = fiexp tit[ (D.35)
i=1 i =1



504

= Ifexp - ttj - exp - tr tnt
1=1 i 4

where t= t ... tn. The density function is given by

f(z) = _ f exp [-zjzj] = -exp -zjz; (D.36)
i= i=1

exp [-zzH] exp P tr [zHz]]

By the transformation y = zB + v, we see that y E CP. From theorem 18, the

characteristic is given by

4b(t) = OPB+v.(t) = exp {i Re [tr(tHv)] } 41z(tBH) (D.37)

where we retain the notation t but modify it so that it is now t = ( t P

Then

4(t) = exp {i Re [tr(tHv)] }exp [-•tr(BtHtBH)] (D.38)

= exp {i Re [tr(tHv)] } exp [--1 tr(tBHBtH)]

exp jiRe [tr(tv)] - tr(ttg =exp zRe jvtn]--lt3tH (D.39)
4 4

Therefore y - CNp(v, E).

Z 1  P1

Theorem 49 Let Z = , i where Zk and Pk are row vec-

Zn , n

tors, and the (Zk)n are independently distributed according to the p-variate

vector complex normal distribution CNp(Pk,E). Then Z - CNn,p(p,I,E).

This is a complexification of the first part of Arnold's theorem 17.3 [31].
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Proof. This is a complexification of Arnold's proof, where I have also used

characteristic functions rather than moment generating functions. By equation

D.39,

-6zk(Tk) = exp {i Re [tr(TkHk)] - 4 tr(TkETH)} (D.40)
n

Thus 4z(T) = 1- 4Dz,(Tk) by independence. Then

[ T "] z (T)[= He j -etr(Tk-T])z = exp iRe tr(Tk 4k=1

=Hexp i Re [PkTkH] -1TkrTkH exp i Re EPkTk 4 E- TkETk
k=1 4 -k= I k=1

=exp iRe tr ( .)

T, E TIH

- - tr "
4

PI

=exp i Re tr " I ... Tý

-tr4 E (TH .. TH)

Tn
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=exp {i Re [tr(yTHf)] - tr [T2T H] }(D.41)4(41

=exp i Re [tr(THu)] - tr }THITE} (D.42)

which is the characteristic function of CNpn(p, I, E).

ZI1

Theorem 50 Let Z -. CNn,n(p, I, E) and partition Z - " ,/=

Zn P.•

where Zk and pk are row vectors. Then the Zk are independently distributed

according to ZkT - CNp(pT, E). This is a complexification of the second part

of Arnold's theorem 17.3 [31].

Proof. Note that E- = I and thus Eij = 6ij. Then by theorem 46, each of

the Zk are independently distributed according to Zk , (,

D.2.4 Matrix Complex Normal Density Function

Theorem 51 Let Z -.. CNn,p(p, E, E) where E and E are Hermitian positive

definite. Then Z has the joint density function

f(Z)= I Idet Idet EIn etr (-:(Z - p)>-I(Z -_ )H) (D.43)

This is a complexification of Arnold's theorem 17.4 [31].

Proof. This is a complexification of Arnold's proof. Let X - CNn,p(0, In, Ip),

or equivalently let Xjk - CN1 (0, 1). Then by equation D.6,

f(X) =-1 etr (-XHX) (D.44)
7rPn
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Let A and B be nonsingular matrices such that E = AAH and E = BHB, as

in equation D.8. By theorem 119, this factorization is possible because E and

E are positive definite. Let Z = AXB + it - CN,.p(p, E, E) by theorem 41.

Then X = A-'(Z - p)B- 1. By theorem 34, the absolute value of the Jacobian

of this transformation is given by

IJI = Idet A1-2p Idet B1- 2 , (D.45)

where the result is modified by our previous regarding the Jacobian of a com-

plex linear transformation. Thus

IJI = Idet -7I- Idet El-' (D.46)

Therefore, Z has the density

fz(Z) = fx(A-'(Z - )B-1 ) IJI = fx(A-(Z - p)B-) Idet E-'l Idet rl-'

1lrPr Idet-EI Idet Il etr (-[A-'(Z - p)B-']H[A-I(Z -/1)B-1])

= rpn Idet EIP Idet 'Iner

irpn Idet EiP Idet 'In etr (-B H(Z - li)HA-fHA`i(Z - it)B-1)

=Ixv-tdetEI~ Idet - etr (-A-HAi(Z - p)BB -H(Z -

1 ( etr (AAH)-,(Z - i,)(BHB)-1 (Z _ ")H) (D.47)
fr(n Idet E mp Idet 1 etr - -(D

MZ) = de Il rdt etr (Z - Or" -(Z - PM~ (D.48)
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D.2.5 Specialization to the Vector Complex Normal

Density Function

The special case of the vector complex normal distribution is widely used in

applications, and thus deserves explicit attention. The following are corollaries

to the matrix complex normal density which was just derived.

Corollary 13 Let z - CN1 ,p0(, 1, E) where E is Hermitian positive definite.

Then z has the joint density

f Idet E1 etr (-(z - p)E-'(z- y)H)

Recall here that z is a row vector.

Corollary 14 Let Z - CNn,p(1u, I, E) where E is Hermitian positive definite.

Then Z has the joint density

fz(Z) = Idet etr (-(Z -_p)r-(Z - p)H
7r Pn Idet "

Recall here that Z is a matrix whose rows are independent.

Corollary 15 Let z - CN,,(p,(-,-, 1) where E is Hermitian positive definite.

Then z has the joint density

1
f ) = -• Idet etr (-(Z _ P)Ht--,(Z - P))

Here, z is a column vector.
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Corollary 16 Let Z -, CN.,p(, E, I) where'-- is Hermitian positive definite.

Then Z has the joint density

fz(Z) = 7r Idet etr (-(Z -/t) 1 1 -'(Z -

Here, Z is a matrix whose columns are independent. This is the form usually

seen in the literature.

D.3 Complex Wishart Distribution

The object of this section is to develop the definition and properties of the

complex Wishart distribution. The development that follows is primarily a

complexification of Arnold's section 17.3 [31].

D.3.1 Introduction

(Z,

Definition 6 Let matrix Z = be distributed according to the ma-

Z,

trix complex normal distribution CNp(;, In, E). The row vectors {Z,}L!1 are

independent, and Zf , CNp(pIT, E). Let

n

W = ZHZ = Z,
:=l

Then W is defined to have a complex Wishart distribution. W is a p x p

complex matrix that is Hermitian nonnegative definite. We identify this dis-
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tribution by notation CWp(n, E, IHi) or CWp(n, E,,6) where b is called the

noncentrality parameter.

Lemma 14 Let W have a complex Wishart distribution derived from Z

CNn,p(p, In, E). Then the dependence of the distribution of W on the matrix

mean parameter y is only through the noncentrality parameter 6 =PHpgt. This

is a complexification of Arnold's lemma 17.5 [31].

Proof. This is a complexification of Arnold's proof. Use an invariance

argument to show this result. Let F be an n X n unitary matrix. Then

Y = rg Cn,p(FpI, rirr) = cNgr(F, In, E) (D.49)

by theorem 41. Further,

yHy = (PZ)HFZ = ZHFHFZ = ZHZ = W (D.50)

The distribution of W is the same for any unitary transformation F of Z. If

F(W; pt) is the distribution function of W for a particular pz, then F(W; p) =

F(W; Fry). Hence, F is invariant under the group G of unitary transformations

g(ps) = Fit. Note the following.

6 (Fpi) def (rf)Hrpj = pHFHrp= 11H def 6 (pu) (D.51)

Thus 6 is invariant under G. Also,

[b(p) = 6(v)] I [AHy = vHv] (D.52)
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By theorem 123, there exists a unitary transformation F such that v = Fv.

Thus 6 is a maximal invariant by Arnold's definition (p. 13) [31], where T = 6.

So, we have a group G of invertible unitary functions g(pu) = FIp that map

space C = {p} onto itself, a maximal invariant 6(p) under G, and a function

satisfying Fi(g(p)) = F(W;F p) = F(W;p) = F( (p). Thus by Arnold lemma

1.11 131], there exists a function k(6) such that FI(p) = k(6(p)) = k(yHp).

Thus the distribution of W depends on pt only through PH y, as claimed. 0

Similar to Arnold's observation for the real variables case, we note that

the distribution of W defined by equations D.49 and D.50 is a p-dimensional

complex Wishart distribution with n degrees of freedom, on the covariance

matrix E, and with noncentrality matrix

6 - (D.53)

This distribution is symbolized by W -, CWp(n, E, 6). Note that both E and 6

are Hermitian nonnegative definite, which is symbolized by E > 0 and 6 > 0.

If 6 = 0, then W has a central complex Wishart distribution which we denote

by W - CWp(n, E). If 6 0 0, then W has a noncentral complex Wishart

distribution.

Notation for this and other distributions are not standardized. I have

adopted Arnold's notation. For the real Wishart distribution, I have also seen

variations of W(p, n; E, 6). For this reason, it is always best to define your

notation at least once in your work.
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D.3.2 Properties of the Complex Wishart Distribution

Theorem 52 Let W - CW,(n, E, 6). Then C{W} = nE + 6. This is a com-

plexification of Arnold's theorem 17.6(a) [31].

n

Proof. This is a complexification of Arnold's proof. Let W = H zz,
i=1

where the Zi - CNp(pi, E2) are independent row vectors. Then

E=(z, - P,)H(Z, - ) } = , - z, - Z["1, + 4,'ýip}

FWE zilz, - plffc{Z,} - ElZr'-pi. + f,,"pi = Efz,"Zi} - 1,1"yi

By rearranging the equation, we get E{IZ['Z1 } = E + yit-tz,. Therefore,

n 71 n

£{W} = £{ ý } z/z = Zi I= E,[ + p4i'Y,

n

fti

j=1

Therefor, E{W} = nE + 6. 0

This proof is important because it was the independent information source

that provided a clue that the function presented by Goodman [92] and An-

derson [26] as the characteristic function of the complex Wishart distribution

was the characteristic function of something slightly different. This became

apparent when I tried to compute the first moment by differentiation with-

out getting the above result. Goodman gives a correct statement of what set

of variables he supplied the characteristic function of, but the importance of

what he said was not obvious to me until I tried to use the function for some

computational purpose.
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Lemma 15 Let

VT = (XI, y , 2,Y,...,X., y)= (VI, V2, V3, V4,..., V2n-_ , V2n)

be distributed according to the real vector normal distribution N 2n(v, 2oa2I)

where

V T = (VI,, V2n) = (11R•, 141',1 JIRni, m)

and a 2 > 0 is a real scalar. Then

Or2X2n a2 )
The variable names of Xk, Yk, PRk, IIk are defined here to suggest notation

used in the proof of theorem 53. This is a slight variation of Arnold's lemma

3.8 [31].

Proof. This is a slight modification of Arnold's proof, where I accounted

for the variation of the theorem and also used characteristic functions rather

than moment generating functions. Because V , N 2n(v, Io'I), the Vk are

independent and Vk- Nl(vk, 1. ). From this, we compute the characteristic

function of the joint distribution as follows.

lv(t) = fi ¢v,(tk) = H exp ritkv- 21(

k=1 k= l

ex~~~v+.+~n~,42(t2a+...+t2 )} exp itTV 1 a 2T
=exp {i (tIV1 + . + t2nV2n) - 4 at + 2n+t~) 4 x iT tt

2n 2n

Recall that VTv= k V4, =1 = v k, and Vk , N, _ 1 Therefore
k=l k l

T _ = VTV _ X2v'

(VV'2)T (,V 2) a2 (2VT)
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by the definition of the noncentral X2 distribution given in Arnold section 1.4

[31]. 0

Notation. It is common for the distributional notation to be slightly abused

as follows to simplify discussion. The abusive notation u -ax( 6 ) is intended

to mean x2 x•(b). If you expand the shorthand notation for the distribution

into its density function for both cases, it becomes obvious that the paired

relationship is not strictly true. That would be a statement about how a

change of variables is implemented. However, the abusive notation does allow

simplification of other developments which involve ratios such that the abusive

constants divide out, and no one is the wiser. Statisticians have also used this

convention with other distributions in journal articles. Caveat emptor.

Theorem 53 (Important) Let W -. CWp=1 (n, E = C2 > 0,b). Then -W

X•, (,26). This is a complexification of Arnold theorem 17.6(b) [31], which

was stated without proof.

Proof. Let Z - CNn( 1 i, o 2 I). This implies Zk -" CNt (pk,oa2 ). Let Zk =

Xk + iYk. Recall that

n n n

~zHz = YE ZkZk = Z (Xk + iyk)H(Xk + iYk)=Z(X +Y•)
k=1 k=1 k=1

Examining Zk, we see that Zk "- CNl(pk, 0 2) implies that the real and imagi-

nary parts of Zk are distributed as Xk , N1(pRk, 10.2) and Yk - N1(pWk, 1(7 2 )2 2
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Recall that CNI(y,o 2 ) is isomorphic to N 2 (IR I a ( ) Let
PIt 0 o'

a = UR + iaj. Then

a•= . + i)( -iaI) R I .

Written in matrix analogy,

aR -a1 a ai '1 a2(+a 2 0

URR )I)
is isomorphic to the above. Using the notation from lemma 15, we note that

n

W = VrV = Z(Xk + Yk2) and VTv ,1 H.. Thus when W ),
k=1

we have 4W = X2 (2-6) .[

Discussion. We will see this theorem used later in developing the form of

the density function for the complex Wishart distribution by using a proof

by the principle of finite induction. Tague [264] used this theorem in his

development of the signal-to-noise ratio at the output of a beamformer.

Lemma 16 Let W - CWp(n, E, 6). Let a > 0 be a real scalar, and let a = b'b.

Then

aW - CWp(n, aE, ab)

This is a complexification of Arnold's theorem 17.6(c) [31], which was stated

without proof.
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Proof. Let W = ZHZ where Z ~CNnp(/,, I, E). Then

aW = aZHZ = (bZ)H(bZ)

By lemma 13 we know

bZ ~ CN,p(bu, I, Jb12 E) = CNn,,(by, I, aE2)

We also know that

ab = (bp)H(by) =ap%

Therefore aW - CW,(n, E, 6). 0

Theorem 54 (Important) Let W - CW,(n, E, 6) and A E CkvP. Then

AWAH , CWk(n, AEAH, A6AH)

This is a complexification of Arnold's theorem 17.6(d) [31].

Proof. This is a complexification of Arnold's proof. Let W = ZHZ where

Z - CNn,p((p, I, E). Then

ZAH ,. CNn,k(p•AH, I, AEAH)

by theorem 41. Thus W - CWp(n, E, 6) and

(ZAH )H(ZAH) = AZHZAH = AWAH - CWk(n, AEAH, A6AH)

where

(pAH)H (pAH) - AILHpAH = A6AH

0]
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Theorem 55 Let W -, CWp(n, E, b), A = (1, 0), and B = (0, 1). Define

the following partitions: W,= ) and b5=
W21 W22 E21 E22

(l b 12I i where W11, Ell, and b, are k x k matrices. Then AWAH

621 b22 J
Wil - CWk(n,Ell,bl) and BWBH = W22 ' CWp-k(n,E 22 ,62 2 ). This is a

complexification of Arnold's theorem 17.6(e) [31], which was stated without

proof.

Proof. The results for both AWAH and BWBH follow directly from the-

orem 54.

Theorem 56 Let W - CWp(n, E, b). Partition W, E, and b into identical

blocks of pl, p2, "'", Pq rows and columns where pi + "'" + pq = P.

W1V ... WIq Ell " lq 6i " lq

W= : ". : = 6 . = :". :

Wql ... Wqq ql " Eqq bql ... bqq

Let Eij = 0 for i : j. Then the { Wi } are independent and Wij - CWp, (n, Eii, 6ii).

This is a complexification and generalization of Anderson's theorem 7.3.5 [26]

to the noncentral complex Wishart case.

Proof. This is a complexification and generalization of Anderson's proof.
n

has the same distribution as _ ZkZH where the Zk are independent and
k=l
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distributed as Zk "- CNp(p, E). Partition Zk and p into blocks of P1, P2, .. , Pq

rows. We know by theorem 43 or theorem 46 that the {Z(')} are independent

because Eij = 0. Because the Zk are independent also, we know

z(,), •., (q) Z(2) .. z~q),.. • I z .,..,z(q)
1 1'•J , 2 1' 2 "" n I "

are independent. Thus
n n

W,1 = z(l)[Z(l)]H,, Wqq = z()[z-)]

k=1 k=1

are independent. Let Ai E C"i 'P where A = (0, Ip,, 0). By theorem 54,

Wii = AWAH CWp,(n, Eii, bii)

Corollary 17 As in theorem 56, let W - CWp(n, E, 6) and partition W, E,

and 6 into identical blocks of PI, P2, , Pq rows and columns where p, +"" +

Pq = p and let Eij = 0 for i j. When b = 0, then W, "-. CWp,(n, Eii). This

is a complexification of theorem 7.3.5 of Anderson [26].

Proof. Substitute 6bi = 0 into theorem 56.

Theorem 57 Let W -'• CWp(n, E,,6) and let c be any nonzero p x 1 vector.

Then

2cWc We 2 (2c"6c\

cHhC X2n pCHe2c)

This is a complexification of Graybill theorem 9.3.2(4).
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Proof. This proof differs from Graybill's in order to take advantage of other

work already presented here. By theorem 54,

cHWc - CWl(n, cHnEc, cHbc)

Applying theorem 53, where cH1 c > 0 to make sure the denominator does not

go to zero, we obtain our final result that

2cflWc 2 2cHbc\

0H 
3 'C X ( c H c

Let W = UL 2UH be the eigenvalue decomposition of W - CWp(n, E, b).

Consider a linear combination of the sample eigenvalues, given by cHL 2c, where

c is a p x 1 vector of known fixed constants. Then by theorem 54 we have

cHL 2c _ CWI(n,dcHUH3Uc, cHUHbUc)

Note that cHL 2 c is a scalar, as are now all the parameters of the distribution.

Then by theorem 53, when cHUH"Uc • 0,

2c"L 2c 2 (2cHUHbUC\
c"u�'Uc 2 x cHUH•UC

We know that when U is unitary, then the similarity transformation UHWU

has the same eigenvalues as W. Then, when we let c be a column vector of

ones, we get

2tr(W ) 2 (2cJ'UH5Uc)

c,,U"rUc 2 CHUHr.UC)
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Remark. Because UHEU is not generally a diagonal matrix, we conclude

that the sample eigenvalues are generally not independent. Thus, disjoint

linear combinations of sample eigenvalues from the same sample set are not

independent. Therefore, the ratio of disjoint linear combinations of sample

eigenvalues from the same sample set is generally not F-distributed.

Now, consider the case when C = (CI, C2) is a p x 2 matrix. Look at

CHL2C.

( H ~ C 2C, CL 2C2
CHL-2C= L? CI C2 = 2

ScHL c2 c Lc C
C2C~' 2 C1 C' 2

This is distributed as

CH L 2C , CW 2 (n, CHUHEUC, CHUHbUC)

This becomes particularly interesting when you choose CIHC 2 = 0. Then

CHL 2 C = 1 (~L 2C, 0

0 C2 L 2C 2 )

However, notice that you do not get zeros in the population matrix.

CHA2C= ( C"A 2C, CHA 2 C2

CHA2 C, CHA2C 2 )

Now, the matrix is an ordered set of 4 random variables. We have taken

linear combinations to force two of the sample values to zero. Note that since

W = WH, we really have only 3 random variables.
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We will pick up on this theme again when we discuss the density functions

of sample eigenvalues in a later section. We next consider a projection theorem.

Theorem 58 Let Z .- CNn,p(u, I, E), V be a k-dimensional subspace of Cn,

and Pv a projection operator from Cn onto V. Then

ZH pv Z - C Wp,(k, E, pH Pv /t)

This is a complexification of Arnold's theorem 17.7(a) [31].

Proof. This is a complexification of Arnold's proof. Let U be a unitary

basis matrix for V. Then by theorem 41,

UHZ , CNk,P(UHP, I, E)

Then

(UHZ)H(UHZ) = ZHUUHZ = ZHpvZ _ CWp(k, E, pHpv P)

where

(UH s)H(UHP) = ,eHUUH P = 1PH Pv p

is the noncentrality parameter. Arnold comments that if A is an idempotent

n x n matrix of rank k, then

ZHAZ - CWp(k, E, pH Ap)

0



522

Lemma 17 Let Z - CN,,,p(p, I, E). Then AZ and BZ are independent if

ABH = 0. This is a complexification of part 1 of Arnold's theorem 17.7(b)

[31], which was stated without proof. This result differs from Arnold's in that

independence does not imply ABH = 0.

Proof. LetC= ,whereAisqxn and Bis (m-q) xn. Then

B

by theorem 41,

Y = CZ , CNm,p(CY, CCH, r)

We look at the characteristic function of Y.

ty(T) = Icz(T)

=exp iRe tr TH T,2H ))]

Str I AH BH4 T T B T2

=exp {iRe[tr(THAp+ T2HBy)] -tr ((T1 HA + THB) (AHT + BHT 2) E)}

-exp {i Re [tr (Ti"A, + T~ )

_4 tr (T1HAAHTI, + TiHABHT 2 2 + T2HBA HT1 E + T2HBBHT2E) }
= exp {i Re [tr (THAp)J] - tr (T1HAAHT1 }
x exp {i Re [tr (T 2HBp)] - tr (T2HBBHT2 )
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x exp tr (T1"ABffT2>.I + THIBAHTi3)}

If

'Icz(T) = 4DAz(T1)'OBz(T2)

then

tr ((THABHT 2 + T2HBA HT,) E) =0

for all T1, T2. Consider T1 = , T 2 = ( ABH ( )

T21 T22 0 1

(oi1E = .Then

1 0

tr (T1 HABHT 2 E) = tr (Ti,-T1 2 + T.1 T22 ) ( 1 0
1 0

Therefore independence does not imply ABH = 0.

If ABH = 0, then

,tcz(T) = 'OAZ(T1)DBZ(T2)

0

Lemma 18 Let Z - CNp(, I, E). Let B be nonnegative definite and AB =

0. Then AZ and ZHBZ are independent. This is a complexification of part 2

of Arnold's theorem 17.7(b) [31], which was stated without proof.
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Proof. Follow the proof of Arnold's theorem 1.13. Let B = EHE and let

rank(Etxn) = r. Then rank(B) = r. Suppose AB = 0. Then ABEH = 0 =

AE" LEH. However, rank(EEH) = r. Therefore AEH = 0. By lemma 17, this

implies AZ and EZ are independent. This, in turn, implies AZ and

(EZ)H(EZ) = ZHEEHEZ = ZHBZ

are independent. 0

Theorem 59 Let Z - CNp(g, I, E). Let A and B be nonnegative definite

and AB = 0. Then ZHAZ and ZHBZ are independent. This is a complexi-

fication of part 3 of Arnold's theorem 17.7(b) [31], which was stated without

proof.

Proof. Let A = D"D where D is s x n and rank(A) = s. Let B = EHE

where E is r x n and rank(B) = r. When AB = 0, then DABE" = 0

which implies DDHDEHEEH = 0. However, DDH and EE" are of full rank.

Therefore, DE" = 0 which implies DZ and EZ are independent by lemma

17. Then

(DZ)H(DZ) = ZHD HDZ = ZHAZ

is independent of

(EZ)H(EZ) = ZHEHEZ = ZHBZ

0
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Theorem 60 Let Z ,-• CN,p(pE-, E) where E and E are positive definite and

n > p. Then

Pr{rank(Z) = p} = 1

This is a complexification of Arnold's theorem 17.8(a) [31].

Proof. This is a complexification of Arnold's proof. Let Z = (Z1, Zp)

and let Sk(Z1,' , Zk) be a subspace of Cn spanned by (Z 1 ," • •, Zk). Since the

conditional distribution of Zk+j I (Z1,-. , Zk) is a nonsingular vector complex

normal distribution by theorem 44 or theorem 47, then

Pr{Xk+l E Sk(Zl,- , Zk) I (Zv -, ,z)1 = 0

if k < n. Note that Sk is a subspace of dimension at most k. Therefore

Pr{Zk+l E Sk(ZI,' " ,Zk)}

SC{Pr[Zk+, E Sk(ZI,,..,Zk) I(ZI,,.',Zk)]1 = 0

Finally,

p-1

Pr(ZI,..., Zp are linearly dependent) < E Pr[Zk+l E Sk(Z,. , Zk)] = 0
k=1

Therefore, Pr{rank(Z) = p) = 1.0

Theorem 61 Let Z - CN,,(, -, E) where E and E are positive definite

and n > p. Let a E C" such that a # 0. Let (a, Z) be the matrix Z augmented

by the vector a. Then Pr{(a, Z) = 1) + I} = 1. This is a complexification of

Arnold's theorem 17.8(b) [31], which was stated without proof.
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Proof. I have not proven this theorem. Since Arnold claims the theorem

true in 1R" and the proof depends on geometric concepts, then it is true in C'.

This theorem is retained since it is possibly useful with updating algorithms

in adaptive signal processing.

Corollary 18 Let W - CW,(n, E, b). If n > p and E is positive definite,

then Pr{W > (1} = 1. This is a complexification of Arnold's corollary to his

theorem 17.8 [31].

Proof. This is a complexification of Arnold's proof. The rank of W = ZHZ

is the same as the rank of Z. See Arnold's lemma A.9 and theorem A.3, with

straight forward extensions to the complex case. By theorem 60, if E is positive

definite and n > p, then Pr{rank(W) = p} = 1. Since W is p x p of full rank

p, it is nonsingular with probability 1. Hence W > 0 with probability 1.

Since W is invertible with probability 1 if E > 0 and n > p, then W has

the nonsingular complex Wishart distribution. Otherwise, W has a singular

complex Wishart distribution which is sometimes called a complex pseudo-

Wishart distribution.

Lemma 19 Let W - CWp(n, E, 0) = CWp(n, E) where E > 0 and n > p.

Partition W and E such that W11 and Ell are both q x q matrices. Then

W11.2 "- CWq(n - p + q, E11.2)
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This is a restatement and complexification of Arnold's lemma 17.9 [31] and it

is also a complex version of Anderson theorem 7.3.6 [26].

Proof. The following is an expansion and complexification of Arnold's

proof. Let W= andE= . Let

W21 W 22  E21 E222 9
p~p p×P

T = W22

U = WlW21

V = W1 - W12W 21'W21 = W1V. 2

By theorem 55,

T = W22 - CWp-q(n, E22, 0) = CWp-q(n, F22)

Let

(Y.Xq, Xn×(p-q)) "•CN.,p(O, I, E)

and let W = (Y,X)H(Y,X). Then

(W11 W12  yHy YHX
W-=

W21 W22 XJJY XHX

By definition of the complex Wishart distribution, W -, CWp(n, Y). Substi-

tuting into T, U, and V, we get

T=XHX

U = (XHX)-,X"Y

V = Yn(J - x(xHX)-'Xt)Y
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Now, find the conditional distribution (U, V) I X. Since (Y, X) - CNn,,(O, I, E)

and Y is n x q, then by theorem 44,

(Y X)1 17El - EUE2'E21) (D.54)

Now,

(U I X) = ((X 1 1X)->XHY I X)

which is distributed according to

CN(Pq),q{(XHX)-lXHXE22 ) E2l, (XHX)-1XHI[(XHX)-IXH]H,

Ell - E12122E21}

or

(U I X) - CN(p-q),q(rl ' 21, (XHX)-l, 11 - E12, 22 ) (D.55)

by theorem 41 where (XHX)-H (XHx). Since the conditional distribu-

tion of (U I X) depends on X only through T = XHX, we can write

(U I T) CN(p-q),q(E2X E 2 i, T-', Ell - E12E2"r21)

CN(pq),q(E E 2,, T- 1, E 1.2)

Consider

[I - X(XHX)-lXH][I - X(XHX)-iXH]

= I - X(XHX)-lXH - X(XHX)-IXH + X(XHX)-IXHX(XHX)-IXH

- I - 2X(XHX)-IXH + X(XHX)-IXH - I - X(XHX)-lXH = By
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and therefore this matrix is idempotent. X is of rank p - q, and so Pv is of

rank n - (p - q).

Consider

(Xr,-2 21 )H[I- X(XHX)-lXH](Xr•Ir22 )

= HF-HXH[I- x(xHx)-XHI(XY1;2,)

x21 22X X(2X 2-1 - 2 =0

where •H = E-'. Since we know the distribution of (Y I X) then by theorem

58
(V X) = (yHpvY I X) 2'CWq(n- p+ q, ru- •1221)

= CWq(n - P + q, r1U.2) (D.56)

Also note

[(XHX)-XH][I - X(XHX)-lXH] = APv

S(XHX)-lXH - (XHX)-IXHX(XHX)-IXH

= (XHX)-'XH - (XHX)- 1 Xn = 0

where A = (XHX)-1XH and Pv = I - X(XHX)-XH. By lemma 18, (AY!

X) = (U I X) and (yHpvY I X) = (V I X) are independent. This implies

(U I T) is independent of (V I T). In turn, this implies that

f(U, V I T) = f(V I T)f(U I X)
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Thus

f(V I (UT)) - f(V I T) = f(V I T) - f(V I X)

Finally,

W14.2 = V I (UT) - CWq(n -p+ q, Ell - E12E )21

= CW9 (n - p + q, El.2)

This completes the proof. 0

Corollary 19 Let W - CWp(n, E, 0) = CWp(n, E) where E > 0 and n > p.

Partition W and E such that W11 and Ell are both scalars. Let

E= ll -- E12E2121 = E11.2

Then Wl 1.2  X2(,,p+l)(O). This is a formalization and complexification of

Arnold's corollary to his lemma 17.9 for the case of q = 1 [31]. Results of this

special case are useful in test statistics of quadratic forms.

Proof. This is an expansion and complexification of Arnold's proof. Let

q = 1 in lemma 19 and let #l = E2E21. By equation D.54 and lemma 12 we

have (Y I X) - CN,,(Xf#,C21). We started with W - Wp(n,E) with E > 0

and n > p. Thus the matrix (Y, X),,×p is of full row rank p, which implies

rank(X,,,(p-,)) = p - 1.

Let U = (XHX)-IXHY and

V = yH[j - X(XHX)-IXH]y
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Then

(U I X) _ CN(P_,),,(13,(XHX)-, 0 ,2) = CNp-, (#,a 2 (XHX)-l)

by equation D.55 and lemma 12. Thus

(V I X) - CW,(n-p+ 1, a2)

and

WVI X)_X2•(VlX) Xn-p+l)(0)

by equation D.56 and lemma 15.

Let T = X•IX. Then by lemma 19 and lemma 12,

V I (U,T) - CW1(n - p+ 1,02 )

and therefore
_2VXs VI (UT) X2(-p+l)(0)

D.4 Distribution of Hotelling's T2 for Com-

plex Variables

Hotelling's T2 is a classical statistic for testing means. It is a likelihood ratio

test statistic. This result is provided because it is an easy result which natu-

rally falls at this point in the general theory of complex multivariate analysis.
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Definition 7 Hotelling's T2 for complex variables. Let Z and W be indepen-

dent, Z , CNp(IA, E) and W - CWp(n, E), where n > p and E > 0. By

corollary 18, Pr{W > 0} = 1. Define

F = n-p+ 1ZHW_1Z

Then

T 2 = np F
n -p+ 1

is called Hotelling's T 2 . This is a complexification of Arnold's definition [31]

in his equation 17.21 and accompanying discussion.

Unlike the case of real random variables, for complex variables the case

of p = 1 does not yield the square of a random variable having a non-central

t-distribution. The careful reader will realize that this is merely due to Cn

R•2. When p = 1, then

nIZA 2 2I 2i2 i 1
___ = Wn =T _F 2 ,2 2 ,p,)

In this section it is shown that F has an F-distribution even when p > 1. We

prepare for our journey with the following theorem and corollary.

Theorem 62 Let A E CPxk and Z - CNn,p(p, I, E). Then

AHWA , CWk(n, AH EA, AH 6A)

where b = p6 H.
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Proof. Let W = ZHZ and Y = ZA. Then

yHy = (ZA)H(ZA) = AHZHZA = AHWA

By theorem 41 we know ZA - CN,,,k(pA, I, AHEA). Further,

(pA)H(pA) = AH'UHPA = AnHA

and by lemma 14 we know AHWA - CWk(n, A HEA, AH6A). 0

Theorem 63 Let Y -, CN,,(p, E) where E is positive definite. Then

2yHE-1y ,. X~n2"IHF-Ill)

Proof. Let Z = E-1/ 2Y. Then

zHz = yH(r-1/2)HF-1/2y = yHE-ly

Let A E C-xn× and c E C m . By theorem 18,

'IAY+c(t) = exp [i Re(tHc)] Oy(AHt)

exp [i Re(tHc)] exp [i Re([AHtip) - I(Att)HE(AHt)
1. ~4J

- exp [i Re(tHc)l exp [i Re(tn Ap) -- tft AEAHt]

= exp [i Re (tH[Ap + ci) - 1tH (AFAH)t]

Therefore

AY + c - CNm(Alt + c, AEAH)
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which implies

Z - CNn (F-1/2•,• E-1/2-( -•1/2)H) = CN"(--71 /2 1,I)

Then

yHE-1y = ZHZ = W CW1(n, I,,HE-111)

by the definition of the noncentral complex Wishart distribution. Thus by

lemma 15,

2 yHr-1 y _ X2n(2 MHE-lY)•

This completes the proof. 01

With this preparation, we are ready to begin.

Theorem 64 Let W - CWp(n, E) where n > p and E > 0. Let a E Cn such

that a 3 0. Then

2aHE-la 2

aHWla -1 X2(n-p+l)

This is a complexification of Arnold's lemma 17.10. This is a good example

that shows complexification involves more than merely changing transpose to

Hermitian transpose.

Proof. This is an expansion and complexification of Arnold's proof. Let

1

0
ao = and partition W and E so that W11 and En are scalars. I =

0
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and E E = . Let V = W-1 . Then

W21 W22 /21 E22

1

w=a'W-lao=( 0 ... 0 V

V21 V22

0

By Arnold lemma A.2(b) [31], which applies to complex as well as to real

matrices,

Vi 1 = (Wll - W12W;21W21)-1

Thus

aH W-ao = (W11 - W12W;lW21)-l

Similarly,

aHo -'ao = (Ell - E12E22 21)

For the special case of k = 1 and p = 0,

aHo Wao "- CWl(n, aloEao) = CWi(n, El1 )

We will take advantage of the fact that ao W-lao and ao ,-Iao are scalars.

ao E-lao ( -( 12 21)-1 _W -EW2l
aoHW-ao -- (W_1 - W 12 W~'W2 1 )-' 11 -21

From corollary 19, let

V = W11 - W1W12 WV 21
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a2 --- El - E12E22E21

T = W22 , and U = W 1 W21 . Lemma 19 established that f(V) = f(V I (U, T))

and 2v-,2 2(np+l)(0). Thus we get

-Wl W 1 2 Wj21 W 2 1  2V X2(n-p+l)(O) 2
2- -= 1 = X2(-+l)()

or

2aJo Y-ao 2

aOW-lao X2(-p+l)( )

So, the lemma is true for a = ao.

Now, let a = Aao where A is invertible. The vector a is the first column of

A. By theorem 54 for B E CPXP and W ,- CWp(n, E, 6), then

BWBH , CWp(n, BEBH, BbBH)

Let B A- 1 and b = 0. Then

A-IWA-H , CWp(n, A-'EA-H)

Thus

2aHE-la 2(Aao)H2l-'(Aao) 2aHo(AHF>2-A)ao

aHW-la (Aao)HW-I(Aao) aoH(AH-W-A)ao

2ao(A-lA-H)-lao 2

ao (AIWAH)_lao

by our proof with ao. 0

Theorem 65 Let Z and W be independent where Z - CNp(p, E), W

CWp(n, E), n > p, and E > 0. Then

F = n - p + I ZHwIZ _ F2p,2(,_p+l)(2pH E_1)
P
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This is a complexification of Arnold's theorem 17.11 [31].

Proof. This is an expansion and complexification of Arnold's proof. Let

U = ZHE-2Z and V = zH•-'z If we fix the value of Z, then by theorem 64Z w -- I-:- z.

we know

2(V I Z) - 0
2 _2.P+j)(0

Thus V is independent of Z, and therefore also V is independent of U. There-

fore 2V _ X2("_P+,)(0). By theorem 63 we know 2U - X2 (2p-E-1 p). In the

case of real variables, the result for V is similar to Muirhead's theorem 3.2.12.

Continuing, we form the ratio for the F-statistic.

1 ZHE-1 ZPU _ -- n -p + I Z HwIz =. n - p + I zffw_,z
2 V 1 ZHE-IZ P

2(n-p+l) n-p-1 ZPW- Z p P

________(2___-__)_ 2(n -p + 1) X~p(2pnE-'#) = F~p,2(fl.p+,)(2pHl_,)

2(,,_p+1) X2(n-p+1) (0) 2p X2(n-p+l)( )

Therefore

F= n - p + 1 ZHW_1 Z , F2p,2(n-p+,)(2pHE-1p)P

Maximum likelihood estimates of t and E are statistically independent and

can be the random variables used in this statistic. This distribution is useful

in testing hypotheses about p and for establishing confidence regions for p.

T2 is the likelihood ratio for testing H : p = po. Discussion can be found

beginning on p. 159 of Anderson [26].
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Theorem 66 Let Z - CNp(p, E) such that E > 0, W - CWp(n, E) such that

"E, > 0 and n > p, a,,d Y E CP. Then

n- p+1 zHý,_IzYHyHW-1y
P + ---HyZ - F 2 p, 2(n-p+I)(2/Hz -l' )

Proof. By theorem 62 we know

2yH-iy A
yHW-1y X2(_-p+l)( 0 )

From theorem 65,

2zH2-IZ ,• x(2pH•,p)

This implies

2 yHE-1y2 YHEf--lY - F2p.2(.-p+I)(2pHE-Ip)

2(n-p+1) YtyW-I Y

which implies our result

n-p+ P yHW-1y

- Z , 7yH---.y F2p,2(n-p+")(2
Py

0

Corollary 20 Let Z - CNp(p,aR), W - CWp(n, bR) such that R > 0 and

n>p, anda,bEC. Then

F= b(n - p + 1) ZHW_1 Z , F2p,2(n-p+l)(2#H Rp)

ap a

Proof. Let Y = Z, E = aR, and E = bR. Note that E-' = IR-I. Then

2(n - p + 1) Zil/aR)"1 Z ZW 1 Z 2b(n-p+1) ZHR- Z ZHW-IZ
2 p ZH (bR)-.IZ 2ap 1-1

The final result follows immediately from this by applying theorem 66. 0
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Appendix E

DISTRIBUTIONS, PART II

This work was undertaken to determine the density function of the complex

Wishart distribution because only a few reports of the density function ex-

ists in the literature, and these were not identical. I considered that use of

the correct result is critical to the primary question of order determination.

In preparing a background for this task, it was discovered that the pieces

of needed knowledge were scattered throughout the literature using different

notational conventions, did not form a complete theory, and occasionally con-

tained minor errors which inevitably get through any editorial and publishing

process. In writing the main part of this thesis, I intended to draw only on

those portions of the general development of complex multivariate statistics

as was absolutely needed. It became obvious that it was both needed and

simpler to produce a well organized presentation of the material. Much of the

material to follow has most likely resided in the minds of others, but I have

not found it. Readers are encouraged to communicate their findings so that a

history of this fascinating subject can be constructed.

What follows began as a complexification of Chapter 17 of Arnold's well

organized text [31]. It has a very nice development of ideas, it uses matrix no-

tation throughout, it. uses norms and projections where it can do so profitably,

anti draws upon some group theoretic ideas. Tlo develop the needed theory for
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the change of complex variables, extensive adaptation was made to results of

Chapter 2 and the Appendix of Muirhead's fine text [187]. Other references

have been used where it was needed. An attempt has been made to accentuate

the similarity of this work with the works of others. By reading the sources

and examining the enclosed work, it is hoped that others may learn quickly

how to make adaptations from real variables to complex variables.

E.1 Complex Wishart Density

The purpose of this appendix is to prove the form of the density function of

the complex Wishart distribution. Several respectable references give conflict-

ing expressions for this density function. It is shown in this appendix that

Goodman [92] provided the correct form. Use of the correct form is critical

to future work. Therefore, three different derivations are presented to gain

confidence that the correct result is obtained. The first is a complexification

of the derivation done by Arnold [31] which gives a proof by induction. This

approach has not been previously applied to the complex case. The second

derivation is the one by Goodman from his classic paper cited above. The third

more general result is by Srivastava [256] which has the complex Wishart den-

sity as a special case. It is reassuring that we get the same answer in thr,

different ways.
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E.1.1 Arnold's Proof by Induction

This is a detailed complexification and extension of the derivation provided by

Arnold in Section 17.6 of his text. The goal is to develop a complex version of

Arnold's Theorem 17.12. We want to find the density function for the nor.sin-

gular central complex Wishart distribution. First, consider the simplified case

of E=I.

Let W - CWp(n,I), n > p.

First, let p = 1. Then by Theorem 53, 2W - X•,2(O).

Anderson [26] gives the density of the noncentral X2 distribution with p

degrees of freedom and noncentrality parameter T2 as

2)=1 12 +u) Tf1[ 22 )02\~ri] '
f(u;p, T) • exp 2 - u2p\ F(-2 (++U] du

Letp=2n, T2 =0, #= k, and u=x. Then

X, 2() = 2 exp[- ]xn1 { Ok[k! P(n + k)]-lxk dx

- l- X
r x'- exp(--)dx
17(n) 2

Perform a change of variables x = 2W, which implies dx = 2(dW). Then W

has a density function given by

f(W) = 2 (-•) (2W)-1 exp(-W)2(dW) =n( ) W"- exp(-W)(dW)

For p > 1, we will prove by induction that

f(W) = Idet Wl-pexp[-trW1 (dW)
7-p(p-l)/2 17 F(n - i + 1)

i= I
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Then, the result will be extended to CWp(n, E) by a change of variables.

Assume that

f(Wn-1) =Idet Wl-(P-'} exp[- tr W,-,]
p--1

7r(p-i)(p-2)/2 [I F(n - i + 1)
:=1

Then, we can express W in terms of T, U, and V. We know conditional dis-

tributions involving T, U, and V from our proof of lemma 19. Recall that

the assumptions were W '.- CWp(n, E), E > 0, n > p where W and E are

partitioned such that Wn1 and El are q x q. We defined T = W22, U =

W,2W 21, and V = WIl - W12WjlW21 . Then

T -, CWp-q(n, E22)

(U I T) -, CNpg.q,q(2- '21, T-', lil - ,12- 221)

V I (U,T) - CWq(n - p + q, El, - E12E22-121)

The joint density of T, U, V is then

f(T,U, V) = f(V I U,T)f(U,T) = f(V I U,T)f(U I T)f(T)

By a change of variables, we get

f(W) = fVI(,T)(WI, - W,2 W:2 'W 21 I W2'W2 ,, W22)x (E.l)

XfUIT(W2'W 2 l I W 22 )fT(W22 ) IJI

To evaluate the Jacobian, look closer at the change of variables. Suppose

Y, = g,(xI,, 2 ,x 3) =W22= T = gi(T,U, V)

Y2 = g2 (xj, x 2 , X3 ) = W = TU = g2(T, U, V)

Y3 = g3 (xI,x 2 ,x3) = W,, "-- V + UHTIIU = 93(T,1, V)
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The inverse transformations are

X= = fl(yI, y2,y3) = T = W22 = fl(W22, W21, W1l)

X2 = f 2 (YI, Y2, Y3) - U = W=2lW21 f(W22, W21, W11)

X3 = f3(Yl,Y2,Y3) = V W11 - WW21W21 f 3 (W 2 2 , W 2 1 , W 11 )

The absolute value of the Jacobian is computed as

Idet JI = {det [(Ofj(YI, Y2, '3)) ] 2
2

8Wt ow,2 w 21 O (w 1 2,,Wý w 21 )

O2a OW,, W2
89W22  8W 22  aW22

det _W, 2 i9W~' a(,- W' W2 1)

OW 2 1  8W 2 , aW 2 1

L iw, 1  awi1  aw,,
2

I • *

= det o Wi~1  If det W,' 212 = I{detW 22} 21

0 0 1

where the dots indicate terms not evaluated because they can be ignored when

evaluating the determinant by expansion. Notice that we use Idet Wj 1 12 rather

than Idet W 1 I in evaluating the Jacobian because we are now doing a change

of complex variables, in accordance with theorem 22. Thus, we can write

Idet JI = i{det W21}21 = Idet w;,,12

Restricting attention to the case where q = 1, for

El 12
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W.=

we obtain

(U IT) ' CN 1 ,1  I11 4,T, - 1  -H

V I(U, T) ",CWi(n -p +1,Ell - l2E!l 12

The absolute value of the Jacobian is

jJ(T, U, V --+ Wil, W,2, W.-I)I Idet Wn~l 1 2

Then equation E.1 becomes f(W) =

JWI- W12W,7A#l J etr f-(lu - E1E- 1Y~ 2Y( 1 - Wl n 1W,2Ii)]

etr~~ ~~ El~(wiwl - 2E-1 12)>~-~ 2 1
1 (~ W 1  iHHWI IwIEHI 1E -

jr(p-1)(p-2)/ 2 j~- rl F (n - (p - 1) + *)]

To simplify the problem, let En In I, Then f (W) simplifies to

M+) IWIl - W12 Wn.l 21n . Il~ln-+ Wn~ II~

exp {- tr (wl l - Wl 2 w21 WiH) - tr 2wi (W. wi) H] _ tr (Wn1)}
X (n - p+ 1)L'(n - p+ 2)F(n - p +3) ..F1(n)

Observe that

1+(p-l1)(p - 2 ) _2p - 2+p 2 -3p +2 _p(p-l1)

2 2 2
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and

1W11 - w12w_,21WjI 1 n- = Iwln-W

by the partitioned matrix determinant. Also,

tr(WgW 1 2W,_1 ) = tr(Wi2W.2,W1 H2)

by property of the trace function. Thus

f(W) -IWI'- exp {-Wn - tr(W,_l.)} IWI"-p exp {-W}
7rp(p-l)/2 1I F(n - p + i) Irp(p-1)/2 I- F(n - p + i)

i=1 i= 1

We recognize this as the distribution function of CWp(n, I). Thus by in-

duction, we proved the result true for p = 1, assumed it was true for p - 1,

and based on this assumption showed it true for p. Thus, it is true for all p.

Now, the result must be extended to general EH = E > 0. To bridge

the gap from CWp(n, I) to CWp(n, E), I must first make the transition from

CN(0, I, I) to CN(0, I, E). Suppose that the n x p matrix random variable Y

has the matrix complex normal distribution CNn,p(0,xp, I,, EPYP). By theorem

51, the density of Y is given by

f(Y) = -np- ]E-" exp [- tr(YE-1YH)]

Since E-' is positive definite, it can be factored into E` = TTH where T is

p x p lower triangular with positive real diagonal elements. Thus

f(Y) = rnp' IV.-n exp [- tr(YTTHyH)j
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Let X = YT, and thus Y = XT- 1 . Then by lemma 5 the Jacobian is J(Y --*
P

X) W [I t' 2'. Therefore

f(XT-') = 7r-"P I 2EI` exp [- tr(XXH)]

Since I left this as f(XT-1) rather than f(X), no Jacobian was needed.

From this point, this is a complexification and expansion of Arnold's corol-

lary to his theorem 17.12. By corollary 36 (Cholesky or Bartlett Decompo-

sition) there exists a unique p x p lower triangular matrix L with positive

diagonal elements such that E = LLH. Let B -. CWp(n, I). Then

W = LBLH , CWp(n, LILH) = CWp(n, E)

by theorem 54. The Jacobian is J(B --* W) = (det E)-P. Thus

f(W) = fB(L-'WL-H)J(B --+ W)

and so

f(W) Idet(L-IWL-H)In-P etr(-L-'WL-H) (dW)
frp(p-l)/ 2(det 2)P r(m - i + 1)

f(W) - (det L)-(--P) Idet W n-p (det LH)-(nP) etr(-L-HL-'W) (dW)
(det E)PC17(n)

(det E)-(n-p) Idet W1 n-p etr(-E-' W) (dW)
(det E)PCrp(n)

f(W) - Idet Wn-P etr(-E-mw)(dW) (E.2)
(det nrp)

where crp(n) is the complex multivariate gamma function. This is the fi-

nal form of the probability density function for the central complex Wishart

distribution CWp(n, E).
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E.1.2 Goodman's Construction

The following derivation follows that by Goodman [92]. Goodman is the first

to publish the density of the complex Wishart distribution.

Consider the matrix Laplace transform of (det W)k where W is a random

p x p Hermitian positive definite matrix variable WH = W > 0. This is given

by

= Iw IWIkexp[-tr(E-iW)](dW) (E.3)

where the integral is taken over all W = WH > 0.

Let THT = W be a change of variables from W to T, where T is a com-

plex upper triangular matrix with positive real elements on the diagonal. By

theorem 27, the Jacobian of this transformation is

P

J(W -+ T) = 2P I t2(p-i)+i (E.4)
i=I

Consider the special case where E = A2 = diag(A2,..., A•). Then A- 2 THT =

2
x

pA-
2
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11l t11t12 ""t1lt1P

tlt11 2I ± t122 .. tt 2 tlp + t22t2p
X

tpptll tjpt12 + t2pt22 Itp12 + It2p12 +... + ItpPI

A -2t121 A-2t 4 142 ... Al -2tllt1P

A2 t2 2t1 1  A- 2(It1 212 + t22) ... A2(t; 2t1P + t22t2 )

A; 2tt 1  A 2(tqPt12 + t;pt 22) A;2(It1 12 + It2 12 +.+ It+ll2)

Thus tr(A- 2THT) =

Aljt~ + -2 (t 2  ±+ .. +X- 2 (It P12 + 1t21 + ... + t+,• A • 0t,12 + t2 2) P ÷t~ PP ll i1 )

In preparation for the next leap of faith, we note that

(det W) k = [det(THT)] k = Idet THIk. Idet TIk = Idet TI 2k

since det THI = Idet TI. Substituting back into equation E.3 we get

"(A2 ) = J Idet TI2k exp[- tr(A- 2THT)]J(W --- T)(dT)

S2k

x exp [Ai2t2 - ,' 2(t2 12 + t] 2) -.... - 2(It1 P12 + 1t2p[2 +... + t2

J+ x2P t2(p - i)+l J (d

i=1 Li=2j=I
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2,2- (I(A+ -+r)r(k +p- 2i + 1)) (Ai1]

where
p i-1
I"1H r- = 7r (p-l)/2
i=2j=l

This is most easily seen by considering a triangular array o- the constant 7r.

7r 7r 7r .. 7r"

7r 7r .. r j

ir

PxP

The columns are indexed by i and the rows are indexed by j. There are 2

elements in the array above the diagonal. Also note that A 2i-1) 1 when

i = 1. Thus

=I A2(i-1) )2(i-1)1I -i A-IIi
i=2i=1

which implies

"(A2) - 7rp(p-)/ 2 f (A2 (k+P-i+l+i-l)F(k + p-i+ I))

= .(pA/2f (A 2(k+P) (k + p -i+1)
i=1

P7r (p-l)/2 (A (k(+p)r(k + p- I + 1))

= p-')/ [det A]+p I rj (k + p- i + 1)
t=1
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since det(A2 )=V

(~ ~ 2)7ppl/ k+p P
(A) - . I-1/ det AJ fI F(k + i

since

Therefore

1(A 2) = IW1'k etr[-A-M2 W(dW)

r ~p(p-l)/2 ldet A 2]k+PFr(k +p)F(k +p -1)... (k + 1)

Let E = UH A 2 U where UHU = I. Note: E = EH. Then

I Idet WIk etr[-E-'W](dW) = JIde WIk etr[-UHA-2U WJ(dW)

= f Idet WIk etr[-A-2 U WUHI(dW)

Let K = U WUH which implies W=-UH KU. By corollary 7, J(K -+ W)=1

which implies J(W --+ K) = 1. This gives us

f Idet WIk etr[-A-2 W] (dW) = >0Ie(HU ketr[-A 2 K](dK)
JW>O JK>OdtU U

= OIK Ik etr[-A-2K](dK)

= rp(p-l)/2 [det A 2 k+pFr(k +p)F(k +p -1) ... F(k + 1)

- P(P1')/2 [detyJEk+p (k +p)[(k +p -1) ...Pr(k + 1)

since

det(E) = det(UHA 2U) = (let(A 2)
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Therefore

fw>o Idet Wjk etr[-E- 1 W](dW) =1

7rp(p-1)/ 2 [det lJk+p •F [(k + i)
i=1

Thus
f(W; E) = Idet WIketr[-E-> W] (dW)

7rp(p-1)/2 [det :Ek+p H F(k + i)

i=1

is a density function on the space of Hermitian positive definite matrices. Let

k = n - p. Then for CWp (n, E) we have

f(W; n, p,E) Idet Win-' etr[-E-'W] (dW)
7rp(p-1)/2 [det El" 1P7 r(n - p + i)

i=l

Idet WIn-'etr[-E-1 W] (dW) = f(W, E)
7rp(p-l)/2 [det E3 n [I r(n - i + 1)

i=1

This agrees with Goodman equation (1.6) [92]. The function f(W; E) is

the probability density function for the central complex Wishart distribution.

For the density function to exist, E must be nonsingular. Note that both W

and E are Hermitian positive definite. W is a random variable. E, n, and p

are fixed parameters. W is p x p of full rank. Li equation E.3, k is an arbitrary

complex constant with Re(k + i) > 0 for 1 < i < p. We finally let k = n - p to

obtain the density for the complex Wishart distribution where n is taken to be

the number of samples of the multivariate complex normal distribution used

in forming W. This relation becomes more apparent in other derivations of

this density function. It can also be seen in the extension to the complex case

of Arnold's discussion of the Wishart distribution. A more compact notation
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for the density function is

f(W) = Idet Wl'-' etr[-E-2W] (dW)[det E]' Cr,(n)

where

P

CLp(n) = 7rp(p-l)/2 lj r(n - i + 1)
i=1

is the complex multivariate gamma function. A shorthand notation for this

complex Wishart distribution is W ,- CWp(n, E). This distribution has not

been around and used long enough for a notation to become standard. Of

course, we still do not have a universally accepted notation for the chi-square

distribution yet, either.

E.1.3 Srivastava's Derivation

Srivastava [256] provided a derivation that obtained a more general result in

the process. The following discussion expands Srivastava's work. He begins

with a Lemma.

Lemma 20 If Y is a matrix of complex elements of order p x m where p < m,

and rank(Y) = p, then there exists a unique lower triangular matrix T with

positive real diagonal elements and a matrix H such that HHH = Ip and

Y = TH. The matrices live in the following spaces: Y E CPxm , T E CPxP,,

and H E CPx-. Note that because H is not square and because HH! = Ip, H

is called semi-unitary.
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Proof. This is corollary 37, where Y = A, and T = L, with appropriate

changes in dimensions. 0

Density of a Quadratic

The following theorem is a generalization of Anderson's Lemma 13.3.1 (2nd.

Edition, p. 533) [26] to a matrix Y with complex elements. The original

citation is to Anderson (1st. Edition, 1958, p. 319).

Theorem 67 (Important) If the density f(yyH) of Ypxm a function of

yyH, then the density of B = yyH is given by

g(B) = Idet BIM-P f(B)TrP1-½(P-1)](dB) = Idet B m'-p f(B)(dB)
g )P (7d-PmCF()

H P(m - i + 1)
i=1

Note that when Y - CNm,p(Omxp, I,, Ip), then

p(Y) = •r-Pmetr(-yyH) = f(yyH)

Y can also be viewed as a random sample of size m from the complex multi-

variate standard normal distribution CNp(Op, Ip). Then f(B) is the density of

B - CWp(n, Ip).

Proof. From lemma 20, we can write Y = TH. Tpp is complex lower

triangular with positive real diagonal elements. HHH = Ip.

We shall now find the Jacobian of the transformation, J(Y -+ T, H). A

basic property of Jacobians that is used is that if changing variables from X to

Y, then the Jacobian J(X -+ Y) is the same as the Jacobian J[(dX) -* (dY)]
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of the change of variables from (dX) to (dY). See Deemer and Olkin Property

5.B.3 [671. We see that Y = TH implies that (dY) = (dT)H + T(dH).

The object now is to define a series of transformations where the Jacobian

of each individual transformation is more easily computed than the original

transformation. We will take advantage of a property of Jacobians that says

that

J(X -ý Y) = J(X -* U)J(U -4 V)J(V -* Y)

where U and V are any functions of X and Y such that none of the terms on

the right vanish. See Deemer and Olkin Property 5.B.2 [671. For completeness'

sake, there are two more general properties of Jacobians that deserve to be

mentioned. The first is

1
J(X -- 1Y)=

J(Y -X)

The second is a bit longer. If X = FI(U) and Y = F2(V) defines a transfor-

mation from variables (X, Y) to new variables (U, V), then

J(X, Y) -+ (U, V)] = J(X -• U)J(Y --* V)

The sequence of transformations that Srivastava chose are as follows. Given

(dY) = (dT)H + T(dH)

premultiply by T- 1 to get

T-1 (dY) = T-'(dT)H + (dH)
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Let U = T-1 (dY), resulting in

U = T-I(dT)H + (dH)

Let V = T-I(dT) to produce U = VH + (dH). The Jacobian is given by

J(Y -* T,H) = J(dY -- dT, dH)

= J(dY -ý U)J(U --- V, dH)J[(V, dH) -- (dT, dH)]

To see where this comes from, notice that U = T-'(dY) implies dY = TU.

Therefore we seek J(dY -- U) = ,I. We also see that U = VH + (dH) implies

that we seek J[U -* (V, dH)] = J12. Treating V as a matrix of constants, this

Jacobian is a function of only H. Let

J[U -* (V, dH)] = g(H) =J2

The relation V = T-'(dT) implies we seek J[(VdH) -- (dT,dH)] = J3.

Putting this all together, we see that

Y - dY = TU using J1 (dY -* U)

TU = T[VH + (dH)] using J2 (U - H)

T[VH + (dH)] = TVH + T(dH) = TT-I(dT)H + T(dH) using J.3(V -- dT)

TT-1 (dT)H + T(dH) = (dT)H + T(dH) = d(TH) = (dY) by theorem 21

Consider Ji = J(dY -- U) where dY = TU. The matrix dY is a matrix

whose elements are the differentials of 1 '×m. Thus, dY is also of dimensions
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p x m. T is complex lower triangular of dimension p x p with positive real

diagonal elements. U is p x m. By lemma 3, we know that

P

, = J(dY -, U) = J1 tt•
i=1

Consider

J3 = J[(V, dH) - (dT, dH)] = J(V -- dT)

where V = T-'(dT). Tpxp is lower triangular, so (dT) and T-1 are also lower

triangular. Hence, V is also lower tridagular. All have real diagonal elements.

It is simpler to examine (dT) = TV and J(dT -- V), and then take the inverse

of the Jacobian. By lemma 6,

P

J(dT -+ V) = ]- t-
i=1

Thus
p

J(V --* dT) = J3 = ti2i+

As noted before, J2 = g(H) is a function of H. We avoid explicitly evalu-

ating it by integrating it out in the next step to find the density of T.

The joint probability density of T and H is found by the change of variables

f(yyH)dY = f[(TH)(TH)HI]JJ 2J3d(T, H) = f(TT H)J1 J2J3d(T, H)

Thus

f(yyH) = f(TTH) t2m g(h) t-t2i+1
\i~l l

i i • • i I I i(i
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= p(T, H) = f(TT)g(H) H1 t1(-7)+'

Integrating out H to obtain the density of T alone, we get

p(T) p(T, H)(dH) = t2(i -)+1) f(TTH) J g(H)(dH) (E.5)

where the integral is over all H such that HHH = Ip. Let C, = fH g(H)(dH).

This C1 will be evaluated later, and will be shown to contain the information

about the distribution of Y. At this point, it is worth pointing out that

f(yyH) can by any function of yyH, and we are merely doing changes of

variables. This only takes on importance in probability when we later choose

a function f of a quadratic which also turns out to be a probability density

function. So, this derivation is really quite general. In the search for the

complex Wishart density, we will choose f(ZZH) such that f(Z) is the complex

matrix standard normal distribution.

Make the transformation

B = yyH = (TH)(TH)H = THHHTH = TTH

By Khatri section (2.8) [1371, which was proven as theorem 26,

J(B -+ TTH) = 2" P t•:"-')+1

T must be lower triangular for this to be true. Thus

P

J(TTH -+ B) = 2- Pj t-2(p-i- 1
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Hence, the density of B is

P(B) t=m-)+1) C, 2-P I i) f(B)

which simplifies to

p

p(B) = C12-P'f(B) I' t 1 -p) = C,2-f(B) Idet T12(m-p)
ji1

= C12-Pf(B) Idet(TTH)IM-P

since T has real diagonal elements. Finally,

p(B) = C12-P Idet BIM-m f(B) (E.6)

This is Srivastava's main result.

Specialization to Complex Wishart

Srivastava's main result is now specialized to the case where Y - CNm,p(O, I,,, Ip)

by evaluating the constant C1 . The probability density for Y is given by the-

orem 51 as

p(Y) = 7r-,P etr[-yyH] = 7r-mPetr[-(TH)(TH)H]

= 7r-MP etr[-TTH] = f(TTH)

Thus, f(B) = .r-'mPetr[-BI.

Returning to equation E.5, we have

p 
P

p(T) = Cf(TTH) l-0t+m-- =+ C,7r- m P etr(-TTH) rX (m-,)+1
i=l 1 =1
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Since p(T) is a probability density, if we integrate over all T, we get unity.

1 i p(T)(dT) = C17r-m P j etr(-TTH) I ,I tm-')+i(dT)
i=1

Concentrate on the integral. From the proof of theorem 26, note that

tr(TT H) = t2l + It2'V + t~2 2± 161312 + It32I ±2 t2 + + Itp_,11 +

+ t.12 +.. + t2_P*,,_t + It,,, 1 2 + It212 +± + t,2

The integral can thus be expanded as

I = etr(-TTH) ( t2(m-i)+) (dT)

-tJ ý 2 e -t2e-et2 1 . . . et2p2(m-1)+1 2(m-2)+l . (m-p)+le ... "•t2 ea 2 • 122 " "tP (dT)

--- (Jtm2(1-)+•e-tdtl) 2(m-2)Jl - t2 2 ) ." (J t2(m-p)+l--t2Pd t-P)

X( (J 2 &1~2 dt 21) (J elItM 12 dt3i) e . t._ (J e' tP'P1

-- (i 21 ..1t)] j=1

By lemma 64, f e-lt 2 di1  = d r, and by lemma 65,

J e( "Ialii = !r(m - i + 1), m - i + 1 > 0
2

Therefore,

I= [ 2 r(m - i + 1))] [ r] = 2-P - r(m - i + 1)
i=2 j=1

where m - p + 1 > 0. Returning to the evaluation of C1, we see

P

C1r- C Pm2-PiPP(P-1)/ 2 I r(m - i + 1)
i=l



560
P

SC12-P~rP[((P"-)-mn r(m - i + 1)

Solving for C1 yields

1 
2PirPm

2-PrPv[(P-()-Il 11 F(m - i + 1) 7rp(p-l)/2 lrI r(m - i + 1)
i=1 i=1

Substituting into equation E.6 yields theorem 67.

p(B) = 2- Idet B m'- f(B) = Idet BI m- f(B)

73.-PmCrp(m) 7r-pmncr(mn)

Substituting f(B) = .r-mPetr(-B) gives us

p(B) = Idet B m-P etr(-B) Idet Bl'- etr(-B)=(B)r), forPm-p+1>0crP(m) rl r(m - i + 1)
i=1

This is Goodman's result when E = I.

Suppose that Y -" CNm,p(Omxp, In, Epxp). This is the same as having a

random sample of size m from the complex normal distribution CNp(0p, ]Ep)p).

By theorem 51, the density of Y is

p(Y) = ,-mP IE- m etr(- Yr-'yH)

By corollary 36, since E-1 is positive definite, it can be factored into E-=

TTH where T is p x p lower triangular with positive real diagonal elements.

Thus

p(Y) =- ir-'EI-' etr(_YTTHYH)
P 

r 
m

Let X = YT which implies Y = XT- 1. By lemma 5, J(Y -- X) = HI t• 2 '.

Then p(XT-') = r-nP IEP--, etr(-XXH).
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We want to find the density function for CWp(m, E). We get CWp(m, E)

variables by obtaining a random sample of size m from the complex multivari-

ate normal distribution CN,(Op, Epp). This yields a complex matrix normal

random variable Y , CNm,p(Omxp, Ima Upxp).

By corollary 36 there exists a unique p x p lower triangular matrix L with

positive diagonal elements such that E = LLH. Let B - CWp(m, I). Then

W = LBLH , CWp(m, LILH) = CWP(m, E)

by theorem 54. By theorem 24, J(B -+ W) = (det E)-P. Thus

f(W) = p(L-1 WL-H)J(B -- W)

- Idet(L-'WL-H)-I etr(-L-1 WL-H)

7rp(p-')/ 2(det E)P .fi r(m - i + 1)

(det L)-(m-P) Idet Wim-P (det LH)-(m-P) etr(-/-HL-1 W)

(det E)PCFp(m)

(det E)-(m-P) Idet W1rM-P etr(_E- 1 W)

(det E)PCrp(m)

Therefore

f(M = Idet W tm-P etr(-E-1 W) (dW)
(det E)mCFp(m)

This is the same answer obtained by Goodman [92]. The extension of

Strivastava's result [256] to CWp(m, E) was motivated by Arnold's introduc-

tion [31] to the proof of his Corollary to his Theorem 17.12, which is an ex-

tension of Wp(m, I) to Wp(m, E).
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E.2 General Theorem on Density of Eigen-

values

Theorem 68 (Important) If the Hermitian matrix X has a density of the

form

g(f,,f2,' ,f) where f, > f2 > ... > fp

are the eigenvalues of X, then the joint density of the roots is given by

g(fl, f2, ,f _ 7p(p-) ) P

i<j

This is a complexification of theorem 13.3.1 of Anderson (p. 532)[26], which

is also similar to theorem 3.2.17 of Muirhead [187].

Proof. I have followed Anderson's general logic, substituting the Jacobians

and other necessary changes to transform it to the complex case. Recall from

theorem 7 that the joint density of the eigenvalues {fi} that satisfy det[A -

f(A + B)] = 0 where A -CWp(m, Ip) and B - CWp(n, Ip) is given by

g(F) = (rCp(m)CrP(n)c+(p) fif-p(i - fi)n-p (fi - fM)2

Suppose we let A = WWH, G = CC" = B + WW7fl7H, and W = CU. Then

0 = det(A - f(A + B)J = det[WWH - fGJ

= det[CUUHCH - fCC"] = det(C) det(UUH - fIv) det(CH)



563

Therefore, the roots of det[A - f(A + B)] = 0 are also the roots of

det(UUH - fIp) = 0

The general strategy is to first do a change of variables using the eigenvalue

decomposition X = CFCH where F = diag(fi, ..- , fp) and f, > ... > fp. We

know irom theorem 115 that we can do this. As we reasoned in theorem 7,

we choose the phase 0 k of the scaling for each CkI so that ciOkckl >_ 0 to force

the transformation from X to (F, C) to be unique. Let the Jacobian of this

transformation be J[X -- (F, C)]. Then the joint density of (F, C) is

g(f,---, fp)J[X -- F, C]

The marginai density of F is given by

g(f",."•, fM J[X - F, C](dC) = g(X) J[X -+ F, C](dC)

To evaluate fc J[X -- F, C](dC), we pick a distribution for X for which

we know the marginal density, g(F). We then have

g(X) J J[X -- F, C](dC) = g(F)

Thus

J[X --+ ,C](dC) = g(F)

We want to choose a distribution for X that will give us an answer easily.

Let X = UUn. In theorem 94 we constructed a random variable U with the
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density function

g(U) = GP,(m +n) Jcet (I, _ UIUH) In-P

Using theorem 67, since g(LJ) is a funct~ion of LTUJH, then the density of X=

UUH is given by

g(x) = IdetXJ' m' Crp(rn+ n) Idet(lp - X)In(f-P

7r-PmcI?(mn) 1rmPCrp(n)

crp(m +n) P
CF()F Jn detXI m  Idet(Ip _XI- p

Since the eigenvalues of X are f{f,1', the density of X is a function of its

eigen values.

==Crp(rn + 72) IA (I -
= ~ ~~' C (r) I'f( 1 if ( - f.)f

where we know by lemma 54 that I,, - X has eigenvalues 1 - ft. The joint

density of (F, C) is then g(f 1 ,. ,fp)J(XV --+ FC). The marginal density of

F is given by

g(F) = g~i p J(X ,F,C)(dC)

_CrP(rnCn) flf=P1 f.)n PJ(X --, FC) (dC)

We know g(F) from the beginning of this proof to be

g(F 7P(P -1) CF(m + n) [ -P 1 ri)- Hf f)2]
g()=crP(m)CI'P(n)CFP(p) 1i= - iJ [~ JJ

Solving for the integral, we find

rjCrl2 [fim-P(I ,)- (f j2]
C-rp(m)CI'p(n)CI'(P) 1 'J -fnP [hfI i

fcJJ(X --+ F, C) (dC) -=,r~)-PI-f)-
Crp(m F1
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crp(p) I <

Therefore, the density of the roots of X is

cp(p-) [i'jh(f 1 , ." . ,f) = g(fi, f)I [r ( f - f)]

which finishes the proof. 0

E.3 Joint Density of Eigenvalues of Complex

Standard Wishart

Theorem 69 Let A - CWp(n, Ip). Then the joint density of the eigenvalues

of A is given by
71"P(p-1) P P- P ill ] i• (i /)

h(= cr.(n)cr1(p) exp P [1•(n-p) [(12 - 1,2)2
C p(nC p()i- 1 i= I- [ j I

This is a complexification of a theorem by Anderson (p. 534) [26]. It agrees

with James [120] equation (95) for the case of E = Ip and with Khatri [137]

equation (7.1.7).

Proof. The density of A is given by

g(A) = Idet Am"-P etr(-A)
crp(n)

By theorem 68, the joint density of the eigenvalues of A is given by

h[i 12i(n-p] exp [ 121 r 1
,CF r(n) C,-E rp(p) ( -

(1 '1 I1 12I I I 2
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7.p(p-1) P P 12-p r(1? _ 1J2

cr~)~~)exp 2Ilj IIl- 21

which completes the proof.

E.4 Joint Density of Eigenvalues of Complex

Wishart

Theorem 70 (Important) Let A - CWp(n, E). Then the joint density of the

eigenvalues (/P,.-,l1) of A is

7rP(i'') oA6(-FY-', A) [r 12(n-p)l T1?_ 1j2)2
crp(n)crpgp) Idet Eln =

This result was written down by inspection without derivation by James

as his equation (95) [120] for the complex case citing the similarity of forms

of the real case. My solution is written in terms of singular values rather than

eigenvalues, and thus my 1 corresponds to other authors' li. The proof that

follows is done without making reference to the case for real variables.

Proof. We begin by following the theme of an earlier paper by James

[117]. The primary concept is to recognize that the distribution being sought

is invariant over some group. This leads to the approach of averaging over

that group. James [118][120] gave an introduction to the group structure that

justified his approach. A more complete construction of the group under study

is given in section H.6 of this thesis. We begin by noting that the distribution
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of the central complex Wishart variable A is

g( a c dt Al n-- etr(- E-' A) ( dA)
g(A) = [det ElnCFp(n)

We want the distribution of the set D of eigenvalues of A. Let A = U1DU(H.

Notice that Idet AIn•-p is a function only of D.

The term we need to deal with is etr(-E-'A). Recall that the similarity

transformation B = UHAU leaves the eigenvalues unchanged where U is a

unitary matrix, U E U(p). In fact, a convex sum of distributions is again a

distribution. Let U1,'" U, be r fixed unitary matrices and let vj," ,v• be
r

positive real numbers such that • vi = 1. Then if A has the distribution
i=1I

Idet AI -p r-,Evietr(-.r-lUnAUi)(dA)[det El"Crp(n) j=1

the distribution of D is unchanged. With a suitable choice of a sequence of

sets of (Ui, vi), this function tends to

g(f. M = Idet Al n-p ) etr(-E- UHAU)(dU)(dA)•(•'",)= det E]nCrpdn) •JU)

Notice that the function fu(p) etr(-E-I UHAU)(dU), after it is evaluated, is

only a function of E and the eigenvalues D of A. Only the elements of D are

left as random variables. This ends the portion of the proof given in [117]. We

now apply theorem 68. Thus, the density of D is given by

dF(D) Idet A I- fu(r)etr(-E-`UHAU)(dU) rP(P-) [ 2 221=FD (12 _ 12)2 (dD)
[det E]"CI1P(n) crP(p)k<
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Rearranging slightly, we get dF(D) =

Idet A I-p 7rp(p-,) etr(-Y-1UH AU)(dU) (l1 _ 12)2] (dD)[det ]-nCrn)rp( p )cr (p)
(E.7)

Recall that Jdet AI` = lI This result is the complexification of Muir-
:=1

head theorem 3.2.18.

I supplied the next portion of this proof, up to the statement of the next

corollary. Let us take a closer look at the integral. Let A = UDUIH and

E = PA2PH. Then

U(P) etr(-_-lUHAU)(dU) = k( etr(-(PA2pH)-lUH(UiDUfI)U)(dU)

= k(v)etr(-PA-2pHUHUIDUHU)(dU)

= k(P)etr(-A-2pHUH UIDUHUP)(dU)

Suppose U and P are both members of the set U(p) of p x p unitary matrices.

By definition, we know

UHU = UUH = pHp = ppH = IP

This implies

(UP)H(UP) = pHUHUP = I,

Therefore the set U(p) is closed under matrix multiplication. Let V = UHUP

U(p). Then (dU) = (dV) because U1 and P are unitary. Therefore our integral

is

Iu(P)etr(-A-2 VH DV)(dV) = etr [ ij=I2] (dV)

kip • kI II
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where A- 2 = diag(A- 2,. .. , A;2) and D = diag(•,. 12). To see this, observe

H
V1

-tr(A-
2 VHDV) = -tr A- 2  D VI VP

VH
V P

vHDv, ... 'vHDvp

= -tr -2

= -tr

\-2 Ov \-A;2vH Dvp

= - tr(A '2 v HDvi +... + A-2H Dv,) = _[A-2 tr(vHDr,) +. -2 tr(vHDvp)]

Note that vHDvj is a scalar. Then

V'3

v~Dv 3 Z(V. ... v 3

PiP
12 vpj

p P-- --~jj I ijl2
i=1 it=

The trace becomes
p p

- A- 212 Iivjl2
j=l i=1

Here is an intermediate result.
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Corollary 21 Let A -,' CWp(n, E = a21p) have eigenvalue decomposition A =

U1DUIH, and let V E U(p). D = diag(l,. .,l1). Then the joint density

function of the sample eigenvalues is given by

,=1 exp ) [ --p[) 2)2
dF(D) - OT2pn CFp(n)CF,(p) I 1i( [ I (dD)

This result is the complexification of Muirhead [187] corollary 3.2.19. When

o2 = 1, this result is Khatri's equation (7.1.7) [137]. When a2 = 1 and n is

replaced by n~p' ,this is Krishnaiah and Schuurmann equation (3.1) [151].

Proof. This is a complexification of Muirhead's proof. A-2 = T Ip and

J etr(-A-2 VttDV)(dV) = etr(-1 VHDV)(dV)
fU(P) U (P) 02

etr(-1DVVH)(dV)= etr(-1D)f ) e (_ 1 )
- J(P) ( 2 ),2 , etr(--dV) = exp ;

since VVH = I.. Substitute this into equation E.7 to obtain the result where

det A = 1i l•. Note that the Haar measure has been noimalized so that
i=1

fu()(dV) = 1. 0

We build slightly on this intermediate result.

Corollary 22 Let E = A2 lp and A - CWp(n, A2 P)i. Let S = -!A, and let

Ds = diag(l1,...,l2) be the eigenvalues of S. Then the joint density of the

sample eigenvalues of S is dF(Ds) =

fn \Pf 7r' /)(_ n 1'12) [A 1 2(n-p) [(1_ 221

V, Crpin )CrpII i A2
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This is the complexification of Muirhead corollary 9.4.2 [187], which was stated

without proof.

Proof. S - CWp(n, Ž2Ip) by lemma 16. Substitute -2 = Ž- into the

previous result.O0.

We know E{S} = A2Ip by theorem 52. If A - CWp(n, A2Ij, b), then

S, (nC2i(p, -1b) and E{S} = A2 IP + -16. The expression for dF(Ds)

would be considerably messier.

We return to developing the central density function of the sample eigen-

values of a complex Wishart matrix. The term we must evaluate is

fo(P et(E1U AU)(dU)

To do this, we draw from the work by Gross and Richards [961. Observe

that E-' and A are both nonsingular Hermitian matrices, and that U(p) is a

maximal compact subgroup of GL(p, C).

We proceed:

k(p) etr(-E-1UnAU)(dU) = u(p) exp[tr(-E-'UH AU)](dU)

= - UHAU)]d(dU) _kZI Z..m(-E-IUHAU)(dU)( d=O *. =O m"() ,l=d

where Zm is the zonal polynomial of order m with matrix argument

(-E-'UHAU)

The summation over ImI = d means that the sum extends over all

Mr +rM 2 + -. = d < oo
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where

M1l >_ M2_._ 0

are integers. By the splitting theorem (proposition 41) we decompose the

integral.

=-jj Zm&,i(-E-1UHAU)(dU)

Iu~pet) U A~U d=O d ,Im[d JU(P)

d;O Il=d m(Ip)

Thus, in terms of zonal polynomials, dF(D) =

I d e t A l n - r ( -)1 - _ _ ) . A ( 1 ? _ 1 ý 1 2 ( d D )
[det jnCFP(n)crp(p) Id! Im Zm(IP)

By definition 90, this becomes

dFD - Idet Alnp•pp1 [0F0(-•-l, A)] (ji2 _ 132)2 (dD)
dE(D) = [det E]•crp(n)cIp(p) [i I

This is the form as given in James [1201 equation (95). In [1191, James

stated that the zonal polynomials for the case of real positive definite sym-

metric matrices are the same for the complex orthogonal group in the complex

full linear group, and the real orthogonal group in the unitary group. A con-

tribution of this thesis is applying Gross and Richards' work [96] which is valid

for Hermitian positive definite matrices. In particular, we are working with

the unitary group in the complex general linear group. The appearance of the

expression is the same. Its meaning is now extended to include our signal pro-

cessing problem. This is the complex version of Muirhead [1871 theorem 9.4.1.
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Proof of this result completely in the context of the complex Wishart distribu-

tion is one of the major contributions of this research. The key insights were

provided by Gross and Richards [96]. Because of the great importance of that

result and because the required working set of mathematics involved is un-

common to engineers, their paper is explained with commentary in appendix

G.

From Gross and Richards equation (5.4.5) we know that for Hermitian

matrix X - XH, zonal polynomials have the property that the value of Zm at

X is uniquely determined by the eigenvalues of X. That is, Zm(X) = Zm(A 2).

We can equivalently say that Zm(UHXU) = Zm(X) for all U E U(n). Thus, in

our problem, we know Zm(A) = Zm(D) by using U1 and Zm(-E) = Zm(A-2 )

by using U2 where A2 is the matrix of eigenvalues of E. From this, we get the

form dF(D) =

[dt5] p()Cr pIdet Aln-p 7rp(p-') [ l1_ '" m•-, Zm(-A -2)Zm(D)][< ZP(p (12_-lJ)2 ] (dD)

jde~J~F~n)C~(p ~=Odfrl=d Zm (IP) J i<,

(E.8)

By definition 90, this is

dF(D) = Idet Al--p irp(P-1) [0F[(-A-2, D)] W( - 12)2 (dD) (E.9)

where oFo(-A-2, D) is the hypergeometric function of two matrix arguments

(-A- 2, D) and of numerator and denominator orders equal to zero. It is the

joint probability density function of the sample eigenvalues D = diag(/•, , lP)

where the population eigenvalues are A2 = diag(Al,..., AP).
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The next result is one that I think is wrong. In the unlikely possibility that

it is right, it opens up new practical possibilities. Recall the definition that

0Fo(-A- 2, D) = etr(-A-2D). Then

Idet AJ--P Irp(p-1) -tr - (12 -2221 1dE(D) = [det E]-crP(n)crp(p) lt(AD]l~

Idet A I-7rPO'' [- 1k] [• 2 _2 1) 2] dD)(l (E.II1)

[det E]ncrP(n)crp(p) _ k=1 (d) E

What is wrong with this is, that in general, etr(-E-'A) # etr(-A-D). That

gives a practical immediate answer. Stopping the questioning process here,

though, eliminates the insights we need to find out why fundamentally the

derivation fails. I think that some steps of the derivation perhaps should have

been only one way implications (=•) rather than equalities [(€=) U (=•)].

E.5 Distribution of F(2n, 2n)

I have supplied all of the work in this section.

One of the proposed tests to determine the number of significant eigen-

values of a complex Wishart matrix involves obtaining two independent sets

of data from which two independent complex Wishart matrices are formed.

When the number of data samples used in forming those matrices are identi-

cal and even, then a simple form of the cumulative distribution function for the

relevant test statistic is derivable in closed form. The appropriate test statistic

was shown in theorem 6 to be distributed according to the F distribution with
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2n, and 2n 2 degrees of freedom. Corollary 1 specialized the result to apply

specifically to comparing linear combinations of sample eigenvalues.

Attention is drawn to the work of Lentner [164] who developed a set of

expressions for arbitrary positive integer degrees of freedom. When his work

is restricted to the special case considered here, the results can be shown to

be identical. The contribution of the following work is that there is a simple

form when the condition of even degrees of freedom can be reasonably met.

The problem was solved by direct integration of the probability density

function. Reduction of the resulting expression to its final form was made

possible through application of an identity from combinatorics.

Theorem 71 Let n be an even positive integer. Then the cumulative distri-

bution function for the F(n, n) distribution is given by

Pr{F < f} = (f + 1)1_n • (n- fk 1 (f kf( ) n +f]k=,,l/ (f + 1),_1=n/2A [ + I

Discussion. The coefficients of fk are the right half of the corresponding

n-row of Pascal's Triangle. This provides an efficient means for testing the

significance of principal components in the small sample case.

Proof. Hogg and Craig [1091 (p. 146) define the cumulative F distribution

in terms of the probability density function as follows.

Pr{F < f}= f(w)dw, 0 < f < oo (E.12)

0
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where
g(f) r(t2)r (),1 +!:, ,f) (r+r2 )/2 (E.13)

0(r, ,r2 ) h(r, ,r 2 ,f)

This is the probability that the random variable F is less than or equal to the

value of f.

For the eigenvalue test, the form of the F statistic has the same number of

degrees of freedom in the numerator and the denominator. This means that

ri = r2 = n. This simplifies equation E.12 to g(f) = P(n)f(n, f) where

4 (n) n - 1)!
[()- L(n/2)12

and

h(n,f) = f(1 f)/

(I +f)n

The resulting integral still must be altered to ease the integration. The

strategy is to take advantage of the property of g(f) being a probability density

function. This allows the problem to be cast into an integral whose upper limit

is infinite. An additional change of variables brings the lower limit to zero,

which allows the application of complex integration. The first step, then, is

Pr{F < f) = fo 4(n)h(n,w)dw = 1 - $(n)j h(n, w)dw

Pr{F < fI = 1 - 0(n)K(n,f) (E.14)

where K(n, f) is the integral of h(n, f). To make the lower limit of integration

zero, change variables to let x = w - f. Then w = x + f which implies
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dw = dx. The limits change from w E [f, cc) to x E [0, o). With this change,

the integral becomes

K(n,f) =- (X + f)t'-2)/2dx
+X+(1 ++f)n

Let z be a complex variable and let

h(n,z) = (z + f)(n-
2 )/

2

(I + z + f)n

Note that h(n, z) is not an "even" function. To make the integration more

tractable, restrict n to the set of even positive integers. That is, let n = 2m

where rn is a positive integer. This gets rid of evaluating a square root in the

numerator. The function becomes

h(2m, z) = (z + f + 1)- 2 m(z + f)M-1

Note that h(2m, z) has a pole of order 2m located at zo = (f + 1)etw. Be-

cause h(2m, z) is not an "even" function, it becomes advantageous to use the

integration technique given by Hayek [103].

E.5.1 Integration

Consider the integral

j h(2m, z) log z dz

The path of complex integration is given in figure E.1.
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Im Let z = R exp(i0)

Branch Cut

\' z-0 = r exp(iO)
0<0<2n

SrRe

Figure E.I. Integration Contour to Get Cumulative Distribution Function

The integral is

f - JCR+L2 +Cf+L, = 27ri RES [h(2m, z) log z, ZO]2,.

= 2iri RES [h(2m, z)logz, (f + 1)ei'] 2 .

Examine the integral of the function along the outer circle as the radius is

allowed to become infinite.

lim = lim (ReiG+-f-+ (iO+logR)iRe'O (E.15)
RI-oo IC R R--o (Rei0 + f + 1 )2m in o ?)ie 6 (.5

=lm RM- 1 RlogR =li o 0, m>o

Recall that we required m to be a positive integer in our hypothesis, so the

condition on m is satisfied.
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Table E.1. Change of Variables

Line z dz log z

L1 R dR logJR

L2 Re i2l dR i2r + log R

Examine the integral of the function along the inner circle as its radius is

allowed to vanish to zero.

r( ee° +)m -1

--1im c= (•ei 6 + I + 1 )2' (iO + logf) icei (E.16)

f= m -C if+1)2m
-lim P 1(io + log C)I f li rnclof-0O (f±+1)2m I CO I(f +1) 2 n,~

The term log c dominates iO as f goes to zero. Invoking L'H6pital's Rule on

flog c demonstrates that this quantity goes to zero as the limit is applied.

Note that there are no poles inside C,. The integral reduces to

I = 1L 1+L 2 = 2iri RES [h(2m, z)logz, (f + 1)ei1] (E.17)

The change of variables for evaluating the integrals are given in table E.1. The

integrals which are evaluated are given in table E.2. Substituting these into

equation E.17 yields

= -i27r +f)m dR = 27rl I? S Fb(2m., z)logz, (f+ l)eit]
S(R+f+1)2 m 2m

Rearranging to obtain the integral of ,r, ,'trest yields

[00o (R +f)m`-i
(R + f + l)2dR= -RES [h(2ni, z) log z, (f + l)E'•],m (E.18)

• ~ ( + f + 1)2 II
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Table E.2. Line Integral Evaluation

Line fab h(2m, z)(log z) dz

Li (R+1)- (log R) dR

L2 fo +1)m(i21r•+•log R) dR

= - f (R++12 ,n (i2r + log R) dR

E.5.2 Evaluation of Residue

To complete the evaluation for the case of even values of n, the residue must

be evaluated at the pole located at zo = (f + 1)e"'. Recall that this pole is of

order 2m. The residue is evaluated by

RES [h(2m, z) log z, (f + 1)e'2m

= z--(l+)exp(i:) (2m 1[z - (f + 1)ei) 2m h(2m, z) logz

= lim I - -I Z+f+)2M (z + f)+-I) log

z-.(f+1),exp(ir) (2m_ 1)! dz2,-_ [(z + f + 1)2m I+f)ml

= lim 1 d+M- M- logz] (E. 19)

z-.(f+1)exp(iw) (2m - 1)! dz 2 m-l [(z + f

To evaluate this high order derivative, recall that

dk _ dR)k dk
dzk \dz }dRk

Let z - ReI" be a change of variables. This implies dz - eedR, (d-k = e-•ik

and d' = d'R Let 0 = r. Then

dk = 
(E.20)S" -k dRk
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Substituting equation E.20 into equation E.19 yields

RES [h(2m, z)logz, (f + l)e"] 2 m

= rlim ()2m -1 R)-l
R--f+1 (2m - 1)! dR 2 mn-l log (Reiw)

where the pole is being approached from the origin. This equals

lim -1 d2 '- , - R)'-" (ir + log R,)
R-.f+l (2m - 1)! dR2 m-1 Iin- ' R

lim i7r d2 (f -- + (f - R)M- 1 log)R
R.-f +1 (2m - 1)! [ dR2m-i dR2m-1j

(E.21)

Several other identities are provided below to aid the evaluation of the

required derivatives.

d k b k m!(a + bx)m-k, k < m
-k(a+bx)m I+ b-) m (E.22)

0, k>m

Equations E.23 and E.24 are taken from Tuma [268] (p. 86).

dXk

(tsv) = 2mn-1 (2m -1) U(k)V(2m -1 -k) (E.24)

Substituting these derivatives into equation E.21 yields

lim -1 d2  (f-i

R--f+ (2m- 1)!dR2m-l (f -R)' logR

Notice that the second condition of equation E.22 causes the first derivative

term of equation E.21 to go to zero, and the second derivative summation limit
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to be m - 1. Therefore,

RES[.]= lim - 1 1: (2m; k )I _1)k (in- ))(f_-R)m-1 -k

R--f+i (2m - 1)! k=0 (m\ - 1 )!

X ).- 2-k(
2 m 2- )

S(-l)m R2rn-I-k

(2mn-1 -- k)

= lira -1 r-1 (2m - 1)! (rn- 1)! (f ,_-__-k (2m -2 - k)

R- f+i (2m - 1)! 1:k!(2m - 1 - k)! (rn - 1 - k)!( ) R2m-i-k

r-i (2m - 2 - k)! (m - 1)! (f - R)m-1-k= lirn -~

R- f+1, =O k!(2 - 1 - k)! (m - 1 - k)! R2m-Ik

r-1 1 (rn - 1)! (f - R)m-I-klim -(.5

R---+1 k=O k!(2m - 1 - k) (m - 1 - k)! R 2m-I-k

Applying the limit to equation E.25 on R yields

r-I 1 (m - 1)! (-1t)m-i-k

E k!(2m - 1 - k) (m - 1 - k)! (f + 1)2m-i-kk=0

rn,-i (m - 1)! (-1)m-k

S=-k!(m - 1 - k)! (2m - 1 - k)(f + 1)2m1-k

=n--I M 1 (-1)m-k

) (2m -1 - k)(f + 1)2mk' >

Substituting this into equation E.18 gives us the integral required by equation

E.14.

Pr{F < f}2 m = 1 - F(2m) K(2m, f)

I 1- 4(2m) y• (M -1
k=o k (2m - I - k)(f + 1)2'-n-k

(2m - 1)! m-1 (m - 1)! (-I)m+l-k

Pr{F<f} = [(-n - 1)!]2 F k!(in - 1 --k)! (2m - I - k)(f + l)2m---k

(E.26)
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E.5.3 Simplification

The reduction to a function of Pascal's Triangle is possible through cancelling

factorials, performing a binomial expansion, and recognizing a combinatorial

identity. Working on equation E.26, we get

Pr {F < ., = 1 - (2m - 1)! ( _l)m+i _k

(M - 1). k' o k!(m - 1 - k)!(2m - 1 - k)(f + 1)2m-i-k

(E.27)

Pulling out the (f+ 1)2m-l term from the summation and reshuffling factorials

gives us

1 rn-1 (2m - 1)! 1 1 (-1)m+l-k

(f+l) 2 mi _ (mn-i1)! k!(mr-1-k)!(2m-1-k)

Applying the binomial expansion to (f + 1)k yields

1 r-1 (2m - 1)! 1  ())m+-k ko f

1-- (f±l)2m-i Z (rn-i) k!(mr- 1- k)!(2m- 1m -k) j=0(

1 M-1 (2m - 1)! (-l)m'+-k k klfj

2m-1••k f

+ 1 ( 2 m - 1 ) ! ( -I'm - k

(f+ (+ i)IM,_ (M- 1)! k (m -I - k)!(2m - -k) j=0 !(k - j)!

(E.29)

The next stage of simplification requires a study of the expansion of equa-

tion E.29. The goal is to pull the term f out of the inner-most summation.

Placing individual terms of equation E.29 summation into table E.3 allows

recognition of a pattern that permits a change of indices.
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Table E.3. Expansion of Pr[F!5 f] Summation

New Old =O0 j=

jm -1 k=0 -Imfo

(mn-I)!O!O! 2m-1)

m m- 2 k= 1 1-Im-Ifo (-1m-Ilf

j m-3 k=2 ( 1m-2fO (-l1)m-2f1
(7n-3)!0!2!(2m.-3) (m-3)!V1!' (2m-3)

I= k m-2 -1)2fO (-1)2fl

1!O!(m-2)!(m+1) 1!1!(m-3)!(m~l-)

-1 110 1 (-)f -)fj 0 k m 1 !!(m-1 1(m) 0! 1! (m--2-)!(-m-

New k=O0 k= 1

New Old j =2 .. j M-

jm -3 k=2 (-1m-2f2
(m-3)!2!O! 2mn-3)

New k =2 .. k m -
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Using the observation that the summation may be reordered allows equa-

tion E.29 to be reformed as

Pr{F<f} 1 (2m - 1)1' fk m-i-k (_l)j+,
(f 1)--l(M =o k j!(m -1-k - j)!(m + j)

(E.30)

Examine just the right most summation, with a "- 1" factored out.

rn-i-k (-1)'
j=0• j!(m -1- k- j)!(m + )

1 rn-I-k (m - I - k)! (-1)Jm-r(m-l-k!! r-• j!(m- l- k -j)! (m + j

I 11 "m-1-k (m -1-k)
r(m-r -k)! j=0 J +

12m - 1 - k 1(E-31

=r(m- 1 - k)! (,m-1 -§k (E.31)

The last step is made possible by an identity in Riordan [223] (p. 47). Sub-

stituting equation E.31 back into equation E.30 gives us

1 (2mr - 1 m1 fk 1 (m - 1 - k)!mr!
Pr)(f + 1)2m'- E k! m(m - 1 - k)! (2m- 1 - k)!

1 (2m - 1)1 f r m(m - 1)!
(f + 1)2--i (M - 1)! k=0 kc! r(2m - 1 -k)

1- 1- (2m( -1)! fk
f )2m-1k k!(2m - 1 - k)!

1 r-i (2m- 1)\fk
(f+l1) 2 m-_ k= k

- I (f + 1)2m-1 _ M (2m- 1) fk

(f+ 1 [2--l- 1) k-I k=O

_[l2E 1 2mkl fk_Y"_, [ fl

(f + 1)2m-1 k E,= k=

"~k= a I I=I I i,
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which we obtained by the binomial expansion of (f + 1)2m--. Thus

Pr{F < f} 1 2m- (2m-. 1 fk
(f + 1)2m'-1 k

k-•m

Recall that n = 2m for positive integer m. Then we obtain the final result

that

IPr{F<f} = 1  
- (n- l) fk f,\2 n- I nPrF<f (f + I)n- I . /2 k (f + 1)n-1 A=/ k

(E.32)

The coefficients of fk come from the right half of Pascal's Triangle. Recall

that Pascal's Triangle takes on the form given in table E.4. For example,

when n = 8 we get

Pr{F < f}8 = (35f4 + 21f" + 7.f6 + f]7 1
S(f + 1)7

+ 1)7 {([(f + 7) f + 21] f + 35) f4}

(f 4 n1))+

(f + 1)7 A'[(4

E.6 Ordered Versus Unordered Eigenvalues

I supplied this section.

When you study basic probability, an early exercise examines counting

rules, permutations, and combinations. Olkin and Derman (p. 67, Counting

Rule 5.3)(200] tells us that the number of distinguishable arrangements of n
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Table E.4. Pascal's Triang e

n

1

2 1'

1 2 1

4 1 3 3 1

1 4 6 4 1

6 1 5 10 10 5 1

1 6 15 20 15 6 1

8 1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

10 1 9 36 84 126 126 84 36 9 1

k 0 1 2 3 4 5 6 7 8 9
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items, nj of which are of type 1, n 2 of which are of type 2,..., nk of which are

of type k, is given by

n!
M/Z nj! n2!'''. nk!

When you look at the density function of a vector random variable

Zl

z2

Z=

Zn

you are including the specification of the order, an n-tuple (Zl, Z2 , ,zn).

This is treated differently than (z 2, zI,- - . z,). For our complex vector normal

distribution, interchanging vector elements would yield a different covariance

matrix.

We are interested in looking at an ordered set of eigenvalues. When we

decompose our sample covariance matrix, we get something like

W = UL 2UH

U1H

12 JH

= I U2 u ... u .U.

12 "

-- ~~~~ U 
iH| i
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Ut1

= qU1 12U 2 ... g Up, =E l1UkUH =W
/ k=1

As you know, order of summation is unimportant (i.e., commutative). As

long as you interchange positions of the eigenvectors to the same ordering as

the eigenvalues, the sum of the products will remain the same. Let u be our

permutation of the index set (1,2,..-, k). Then

P P

"Zl())UG(J)u (U) = k
3=l k=1

When I? :# l• for all pairs of i and j, then there are p! orderings of the

paired eigenvalues and eigenvectors. Given that the density function for the

ordered set of eigenvalues (12,t2,...,l2) is g(L 2), then the density function for

the unordered set of eigenvalues (l (1 1), 2.., ) is p! g(L 2 ),
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Appendix F

RESULTS FOR SIGNAL PROCESSING

This appendix provides results either directly related to known signal process-

ing needs or are one step removed from those needs. Many of these results are

a complexification of Arnold's section 17.7 [31]. It includes studies on forms

involving the matrix complex normal distribution, the complex Wishart distri-

bution, and functions on these forms. Most of the statistical work done in this

thesis bears directly on making a path to the answer to the thesis question.

With just a small amount of extra work, it was possible to produce results of

value to other portions of the acoustic signal processing community. Many of

those results are presented in this appendix. These forms include the trace,

determinant, inverse, and some selected ratios. For completeness' sake, at the

end of the chapter, some beamforming results by Tague will be presented to

show the usefulness of these methods.

This appendix builds on itself as it goes along. Although you can get a

highlight of results by looking at the theorem stateynrnts, tle hfht way to find

out how they live is to start from the beginning.

F.1 Trace Distributions

Theorem 72 Let Z E CN,,(p,-,2) and let T be an m, x r complex matrix.
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Then

tr(THZ) , CN1 (tr(THPa), tr(THETE))

This is a complexification of Arnold's theorem 17.13(a) [31], which was stated

without proof.

Proof. From equation D.9, recall the characteristic function for Z.

Dz(T) = exp [i Re (tr[THP) -4 tr[T

Let u = tr(THZ). Then

Ou(t) = C{exp(i Re(tnu)]}

where t is a scalar and therefore commutes. Then

4u(t) = E{ exp[i Re(tH tr[THZ])]}

= S{exp[i Re(tr[(Tt)HZ])]} = Oz(tT) - 'Itr(THZ)(t)

since u - tr(THZ).

Alternately, by theorem 19

4 tr(THZ) = OTHIZ(tlr) = 'Iz(TtIf) = 4z(tT)

with the last step justified by theorem 18.

Let r = tT. Then (z(tT) = Fz(r). Note that r is a matrix of the same

dimensions as T. The transform variable t is a scalar.

Oz(r) = exp iRe (tr(rnpl) - 1 tr[r"nrE]]

. . iII l l l4
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exp [iRe (tr[(tT)H]) - 1 tr[(tTl)H=(tT)rl]

=exp [iRe (tH tr[THl]) - 1112 tr[THzTN]]

This is the characteristic function of a scalar complex normal random variable

with mean tr(Tg/i) and variance tr(THETT). Therefore,

tr(THZ) , CN 1 (tr[THuI, tr[THETE])

0

Lemma 21 Let Z - CNm,r(iL, I, I). Then

2-- tr - [2 tr(pI,)

and when a 2 = 1 this is

2tr [ZHZ] 2nmr [2 tr(pHy)]

This is a special case of the complexification of Arnold's theorem 17.13(b) [31]

(which was stated without proof), and will be used in the proof of the more

general case.

Proof. Let Z = (Zi3), pi = (piu) where the Z1j are independent and Zj ",

CN1 (pij, 1). Then Z - CN,r(p, I, I) and ZH'Z - CWr(m,I, 6) where 6 =

YHp. Consider Z"Z directly.

z H
tr( ZHZ)= tr ... Zr)

Z$I
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zli

where Zmxr = (Z,'", Z.) and Zi =

Zmi

Note that this is the same answer as you get when you vectorize Z. Let

ZiI

Zmi

j=" i="-

ZZi

ZirI

Z-r

Then tr(ZHZ) 2 ZH2. Similarly, tr( pHj) =IHA when p is vectorized in the

same way. Then Z,,rxi - CNmr,(i, I), where a2 = 1. By theorem 53 and

lemma 15 we know

or

2H-2 _ CW,((mr,a 2,)
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where

= jHj = tr(,iHY)

Therefore,

24 tr(ZHZ) _~ X2.r - tr(p H!) 2"Xn, (2 tr(tLHy))

wiere a2 I

Theorem 73 Let Z - CNm,r(y, E, E), with Hermitian positive definite E and

E. Then

2tr [(z - p)nz-l(Z - )E-1] X]mrI2tr(ILH-I/IE-1)I

This is a complexification of the first part of Arnold's theorem 17.13(b) [31],

which was stated without proof. The real case for my result differs from

Arnold's result.

Proof. Let E. = AAH and E = BHB, which we know by theorem 119.

Then

tr [(Z- _)H- - ) ] = tr [(Z p)H(AAH)-.l(Z - p)(BHB)-1]

= tr [(Z - p)HA-H A-'(Z - p)B-IBH-H] = tr [B-H(Z - p)HA-HA-'(Z- I)B-1

= tr ([A-1(Z - lt)B-l]H[A-'(Z - p)B-']) = tr(ZHZ)

where Z = A-'(Z-p)B-. By theorem 41, Z , CNm,r(p,-, E), which implies

Z = A;xm(Z - p)nxrBr,-
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CNm,r(A-1 tB-1 , A-";A-H, B-HEB-l) = CN, 7,,(A-'ypB- 1 , I, I)

Then by lemma 21 we know

2tr(ZHZ) _ X2.m [2tr {(A-lpB-1)H (A-1pB-')}1

= Xmr [2tr {(A-"pB-1) (A-lIB-1)H}]

= X2mr[2 tr {A`tB-B-HpAH}j = XLm [2tr {fI(BHB)-'yt(AAH)-l}]

= X2mr [2tr 11E-,H-•}]= Xmr [2tr {fHE- IiY•}]

Therefore

2tr [(2.-,)~' ~ r [2 tr {H1 2}

which concludes the proof. 0

Proposition 40 Let ZmXT "- CNm,r(tI, _, E), with Hermitian positive definite

--MxM and Ex. Let

-= ( 0C C12

C21 C22

and

Ell E12

(21 E22

Define the trace of a rectangular matrix to be the trace of that matrix when

made square by augmentation with an appropriately chosen zero matrix. Then

tr( = tr(Hz ) = tr(=- 1 Z)
rxm nmXr
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CN1 (tr (TH•4zs) ,tr(=---E½i)) -- CNi[tr(=--'),tr(=-'Ii)I form < r

Note that the argument of the trace function here is not a square matrix. The

trace function is usually defined only for square matrices. Finally,

2tr(ZH?-7ZE-I) ' X27,r [2tr(pH--1,u-1)]

This is a complexification and extension of errata to Arnold's theorem 17.13(b)

[31], which was stated without proof.

Proof. First note that E = .H. Since Z CNm,,(/i, E, E), then by theorem

41 we know E-1 Z - CNm,r(E-jU,E-,,2). Consider tr(.) where T is
r xr

m x r. We consider two cases, based on the comparison of m and r.

First, let m > r. Define T = . Then
O(M-r)Xr

THE-=Z= I Orx(m•-r) ] -,Z = [ =1 Z 0 ]rX

Also,

TH=--M T = Ir Orx(m-r) = (L0) )= C1
C21 C22 0(m-r)xr C12

Therefore by theorem 41

TH.--.-Z -' CNr,,,(Tn=E-11t, Cli, E)
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Notice that tr [TH=-IZ] is the sum of the elements down the main diagonal

(identified by x in the matrix below) of the m x r rectangular array E-- Z.

xyyyOO

y xyyO0

yyxyOO

yyyxO0

yyyyO0

!yyyyO 0

Let US define this as tr[-E-Z]. Now, consider tr(THE-lT•) = tr(Cui•). From

our study on characteristic functions, recall from theorem 19 that 4 irux(t) =

'Ox(t I). Now, by equation D.9,

X1 ( YCY,0 )

'I}TH=__1Z r) = exp {iRe [tr (THTHE1-,z)] -- tr (r~r2}

Now, let ue = ti to obtain the characteristic function of the trace of Trom--'Z.

We get
H=-11 I (IHt'cIlI•)

Otr(T1=-1Z)(t) = exp {i Re [tr (t-IHTHE1ti)] - tr

= exp { i Re [tr (t'THE-1,I)] -4 tr (t-tC&2)

exp {iRe [t*tr (TH-I'l)]- I{ ItI2tr(CiYE)}

This is the characteristic function of the distribution

CN (tr (TH p) , tr (CI, ))
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By our definition for the trace of a rectangular matrix, we can call this

CNI (tr (-), tr (CilE))

Now, let r > m. Define T 0""mOm(rm-) Then

TH lzI. =-lZ

0(r-r)xm] 0

We further note that

T He-=T = M - Im, 0,,x(r-m)

0(,--,,0xm

0([-m)x.m E-I Im 0 0

By theorem 41 we know

0T H=-Z CNr,r (THE71p, ( E)~

We also observe that

TH.--'-TE =E =-

0 0 0 0 E21 E22

= ( --IEl0 =-'E12 )

~~~~~~ . . .0=ii
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From this we see that tr(TH-- -lTE) = tr(--1Ell ). Once again examining the

characteristic function, we now change only the definition of T and we observe

tTH=-.1Z(r) = exp {iRe [tr (rHTH=r-lp)J - tr (rHTHr1Tr)}

=exp{iRe [tr (rH - 1)1 -- tr [rH (=-I O ) T2}

by equation D.9. To obtain the characteristic function of tr(TH=-1') we once

again let 7- = tI. This gives us

(THf-1Z(tI) = exp {iRe tr t* - 1 tItltr -;-2l1 1212

0 0 0

=exp iRe tr t* j - t[2 tr[E-21]

This is the characteristic function of CNI tr ( tr( 1EII)
0

You can observe that this theorem can be generalized easily by application

of the Singular Value Decomposition.

Now we want the distribution of tr (ZHE-1Z2-1). Recall that Z

CNm,r( ,E, ). Let E = AAH and E = B"B. We do this by theorem 119.

Then

tr (ZH-1ZE-) = tr (ZH(AAH)- Z(BHB)-' tr (ZHA-H A-HZB-IB-H)

= tr (BZ-H A a-HA-1ZB-1) = tr ((A-'ZB-')H(A-'ZB-')) = tr(YHy)
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where Y = A-'ZB- 1. Note that

Y -, CN,•,,,(A-'yB-', A-'-A -H , B-HIEB-')

= CNm,r(A-I/B-1 , 1,I)

by theorem 41. By lemma 21 we know

2tr(YHY) = 2tr (ZHE-Z ) . X~mr [2tr (Yn 1--)]

Theorem 74 Let W - CW,(n, E, b) with Hermitian nonnegative definite E.

Then 2tr(E- 1 W) , ,p[2tr(E-16)]. This is a complexification of Arnold's

theorem 17.14 [31], which was stated without proof, and it also generalizes the

complex version of the distributional result of Muirhead's theorem 3.2.20 [187].

Proof. Because E is nonnegative definite, there exists a decomposition

S= BHB by theorem 119. From the definition of W, let W = ZHZ where

Z - CNnp(ji, I, E). B is p x p, Z is n x p. Then

tr(E-1W) = tr[(BH B)-1 (ZHZ)] = tr(B-lBH-nZHZ)

= tr(B-H ZHZB-') = tr((ZB-')H(ZB-1))

Let Y = ZB- 1. The -ew variable Y is n x p. Then

Y .-. CNn,p(tB-,I,B-UEB-1 ) = CNn,,( 1aB- 1,I,I)

by theorem 41. We note that

tr [(pB-' )H (pB-')] = tr(B-HpHpB-1) = tr(B-lB-njzH u) = tr(S-1')
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where b =, am and , = (BHB)-1 . Then

2tr(YHY) = 2 tr(-> 1 W) _, X2,p[2 tr(•-'b)]

by theorem 21.

Lemma 22 Let W - CW,(n, E, 6) where E has the eigenvalue decomposition

F = UA2UH. Then

2 tr(A 2 UHWU) 2- x [2 tr(A 2UH6U)]

Proof. Note that A2 = UH FU. By the definition of the complex Wishart

distribution, let W = ZHZ where Z - CN,,p(p, I, 2). By theorem 54 we know

UHWU , CWp(n, A2, U1 1 U)

By theorem 74, we get the result

2 tr(A- 2UHWU) -, X2np[2 tr( A- 2UHbU)]

0

F.2 Characteristic Function of the Complex

Wishart Distribution

Theorem 75 Let W - CWp(n, E), E > 0. Let W = 2W - A(W) where

A(W) is a diagonal matrix consisting of the elements on the main diagonal of
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W. Then IW has the characteristic function

4IW(T) = [det (I,- i-ET)]-n

where TH = T E Cpxp and IV has the joint distribution of the random variables

(Wul I W22,'"- , Wpp, 2WRIn,2WI12, .. ., 2WR(p_,),p, 2W,(p_,),p)

This is Goodman equation 1.7 [92], Eaton proposition 8.3(iii), (p. 305) [74],

and the complexification of Arnold's theorem 17.15 [31].

Proof. As a preamble, note explicitly that we are not obtaining the char-

acteristic function of W. This is not the characteristic function of the joint

distribution of the random variables

(W11, • • •, Wpp, WRI2, W112, • • WR~p-l),p, WI~p-1),p)

This tradition was also honored by other authors in deriving transforms for

the real Wishart distribution. The characteristic function for IV is useful

for studying some transformation of variables, but great attention to detail

is necessary if it is to be useful for computing expected values of moments.

This is because -i•-tM does not exist when i 0 j. This is a result of imposing

the condition T = TH which is used to justify the existence of an eigenvalue

decomposition in equation F.1.

This is a complexification and expansion of Eaton's proof. Let Z

CNp(O, I) and C E CvPx. Then

X = CZ CNp(0, CCH) = CNp(0, E)
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where E = CCH by theorem 119. Let {Xi}• be a random sample of size

n > p. Then
n

W = EXJX ,' CW~ (nE)
j=1

where X3 is a column vector. We want to find the characteristic function for

W. Note that W = WH > 0. Thus, let the argument of the characteristic

function have the property T = TH > 0. This will make the answer come out

in a nice form.

It turns out that we are not deriving the characteristic function of W, but

rather we are deriving the characteristic function of a related matrix variable

which I will call W4. The transformation matrix T in my proof is called A in

Eaton's proof.

4Dw(T) = E{exp[i Re(tr(THI V))]} = E{expli Re(tr(TIV))]}

since TH = T.

n n

E{exp[i Re(tr(T XjXy))]} = E{ IJ exp[i Re(tr(TXjX"))]}
j= 1 j=1

- 1I E{exp[i R e(tr(TXjXj))]}
j=1

since the {X3 } are independent. Further, since the {Xi} are identically dis-

tributed, for your favorite j we can say this equals

= n[Clexp[i Re(tr(TX X H))] I" [E{exp(?iRe(tr(XY TXj))]}]

=[Efexp[iRe(X 'TX,)j}]"
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because we recognize that X4TXj is a scalar and thus equal to its trace. We

drop the subscript j and use the lower case x to signify our generic independent

identically distributed vector. Let x = Cz and B = CHTC. Then

4w(T) = [E{exp[i Re(zHCHTCz)]}]n = [E{exp[i Re(zHBz)] ]n

Note that BH = B > 0, so by theorem 115 it has an eigenvalue decomposition

B = FA 2FH (F.1)

Thus

'I1,(T) = [Elexp[i Re(zJIFA2IrHz)] }] = [E fexplzi Rie(y HA 2y)]1}f

where y = FHz. Note that

y = rz - CNp(0, FHr) = CNp(0, I)

This is the same distribution that z has. Thus, we can write

Sp °n

'Iw(T) = [({exp[iRe(zHA2z)]}]n = [{exp[iRe(Z A• ]zk 1)1}
k=1

where {zk}• are the elements of complex vector z, and are independently

distributed as CNI (0, 1). Therefore,

ýOW(T) = [rjv{exp[iAk zkl]k

since the A2 and tZk12 are real-valued. We continue by expressing the expected

value in its integral form.

4tw(T) = {I fc exp[iAk IZk1I exp[- IZkjdZk}
k=1l 7
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= r-np exp[-(l - iA')Izk12 Idzk } " = In-"7r ( n

k=J k= 1 k-i

= fj (I - A) = [d, (,-iA2)-
k=l

where A2 = diag(A2,.. ,A ) and (let (I - iA 2) -7 0. Since 3" = B > 0, all its

eigenvalues are real by corollary 34. Therefore A2 # -i for any value of k, so

the determinant always exists.

I have lost the pedigree of the proof that A? cannot be pure imaginary.

However, it is important, so it is presented. Suppose there exist some A4, A2 E

R such that (1 - iAM)(1 iA2) = 0. Then

1 =k0

which implies
J2 k

A= -A+ k

This is impossible, so there can never be such X4, A2.

Continuing,

4ýw(T) = [det(Ip)I-' (det (IP - iA 2)]-n = [det(rr")I] -dn (,-A2)]V-

=[det(l')] - [dc (ip - iA 2)) -n [dcl(I"')] -

=[dclt (ru'1 - Il'A 21-11)] = fdci (1, - i*B)]V

since B = FA2I"tt. We also recall that , = Ct"'TC which gives us

lbw(T)= [dl (4n - nit [ (P - KIYIIT)l
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by Lemma 47. Then

,6W(T)= [det (Ip - iET)]-I

where E = CCH. 0

F.3 Functions of a Wishart Matrix

Example 6 E{W} = nE. This result is known by many people for the case

of the real Wishart matrix. The point of this example is the use of the char-

acteristic function of IV to compute the expected value of W. It is not quite

the trivial exercise one might expect from experience with univariate statistics.

Blame this example on me.

Proof. Recall that the characteristic function corresponding to the joint

density of

(WI I, W22).. "I" Wpp, 2W O, W112, • ,2WR(p-1),p, 2WI(p-1),p)

is given by

ItV(T) = [det (I, - iET)f-"

where T = TH. From the properties of characteristic functions, we recall for

the differential operator

D(Tjk) = k+i
(90j 491)
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that

£{W} = -iD(T)4)x(T)

T=O

when D(T)4Px(T) exists. So,

D(T)[det (I. - iET)]-"= -n [det (I,, - i -(n+ID(T)[det (Ip - iFT)]

From theorem 17, we recall

D(T)[det (I - iT)] = i [A(E) - 2E]

T=0

where A(E) is a diagonal matrix of the elements on the main diagonal of E.

Therefore

-iD(T)[det (Ip - i'T)]-n= ini [z[A() - 2E]

T=0

=n[2E - A(E)] = £{W}

What we really want is £{W} obtained from the joint density of

(W{I, " " , Wpp, WR{2, W1121 * , W-(,,-[),p W-(p-,),p)

EIw} = Ef2w - A(w) I = n[2.v - A(E)]
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Note that A(1WV) = A(W), thus E{IA(1'V)} = C{LA(W)}. Then

E{A(1)} = n[2A(E) - A(E)] = nA(E)= ={A(W)}

Therefore £{W} = nE.

Theorem 76 Let W - CWp(n, E) and let a E CP be a fixed vector of complex

numbers. Then the characteristic function of the quadratic al-l/a is given by

lbaHwa(t) = [det(1 -iaHUat)]-n

where iW = 2W-A(W) and A(W) is a diagonal matrix whose diagonal entries

are the elements on the main diagonal of W. I supplied this result.

a,

Proof. Let a = and

ap

Wi I .. w,.,

wWp W(p

Then

P 
P P

allWa = a1 = 1:1 a*Wjkak
k=l j=. k=l

Let the (j, k)Ih element of A* be a~ak = (A*),k. Then A = aa H and by theorem

20

OaHIWa(t) = 4w(At) = 4ý(aaHt)



609

Applying Goodman equation 1.7 [92] for IDW(T) = [det(Ip - iET)]-f we get

DaHwa(t) = [det(Ip - i•2aaHt)I-n

where t E C is a scalar. Treating Ea as a p x I matrix and a H as a 1 x p

matrix in Eaton lemma 1.35, we get

(I)aHWa(t) = [det(1 - iaHYat)]- n

0

Theorem 77 Let W -. CWp(n, E), E > 0. If n > p, then

det(Wý) = det(E- 1 W)

det( E)

has the same distribution as Hl Ui where the Ui are independent and 2Ui,
/=1

X2(,-i+I)* This is a complexification of Arnold's theorem 17.15(b) [31], which

was stated without proof. Goodman [93] gives an alternative proof. It is also

a complexification of theorem 7.5.3 of Anderson [26].

Proof. The proof presented here follows the hints given in problem 17.13(a)

of Arnold [31] applied as to the complex Wishart case. Let E-` = CCH. This

exists by theorem 121. Then

det(E-1 W) = det(CCHW) = det(CHWC)

Since W - CWp(n, E), then by theorem 54 we know

CHWC , CWP(n, CHEC) = CWp(n, CHC-H C-C)
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Thus, CHWC - CWp(n, Ip). Let V = CHWC. Note that the partitioned form

of V is V =By lemma 46,
0 V22

det V = (det V2 2) (det( , - V12 V•2 2 1 )) = det(V22) det(V1 1 )

By !emma 19, with ¼1 being det(z), we know that with a2 = 1,

2U, = 2(V11 I V22) 2

By theorem 55, V22 -" CWp-.(n, IP4').

Now, partition V22 in the same manner that V was partitioned. Then
2u, 2(V33 v) _ X2

2U2 = 2(22 .- p+)(

and V33 - CWp 2(n, Ip-2). repeating this process through the pth entry, we

observe that 2P det(V) = fi (2U,) where 2U1  X(._+j)(0). By reversing the

index, we get 2U2 - X2(n-i+1)(O)I since-, X( _ +1X(0),(sinc

{2u,,..,2up} {2(n-p+l), 2,,•-p+2)," ""2x

Note that this theorem says that the distribution of det(W) can be con-

sidered as

2det(W) -, 2-P [det El] Hi X2(,n,+l)

and
2P det(W) _2Pdet(W•) = 2P det(E- IW) "I P 2(X2(n-i+l)

det(E)

0
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Theorem 78 . Let W - CWp(n, E), E > 0. If n > p, then

£{det(W)} = p! (n) det(E)

This is a complexification of Arnold's theorem 17.15(c)(i) [31], which was

stated without proof.

Proof.

= { det(W) det(E) = [det E] det(W)I{e() de() IIdtE

P

By theorem 77, det(E-'W) has the same distribution as fI' U, where the U,
i=1

are independent and 2Ui"" X'2(,-i+l). By property of the X2 distribution,

6{2UiI = 2(n - i + 1). Thus, C{U,} = n - i + 1. Continuing,

p p

£{I7 u,} = lI glu,}

since the Ui are independent. So, we have

p

£{det(E-'W)} = E{jlUi} = n(n - 1)... (n -p+ 1)
i=1

which implies

£{det(W)} = det(E)E{det(E-'W)} = n(n- 1)... (n -p+ 1)det(E)

(n -- p)! det(E) = P!" det(p )

0
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Theorem 79 If W - CWp(n, E), E > 0 and n > p, then

E{[det Wlk} = [det E]k Cr1(n + k)/Crp(n)

£{[det = [det £]2 [p!]2 (n+i)

var{det W} = [det E]2 [p!] 2 (n)(P+-_)

This is a complexification and generalization of Anderson's lemma (p. 264)

[26].

Proof. This is a complexification and generalization of Anderson's proof.

By theorem 77, det(E- 1 W) has the same distribution as [1 Ui where the U,
i=1

are independent and

2U, A
" 2(n-i+l)

From Patil et al. (p. 35) [204], we know that if x X2,,, then

- 2kr(Im + k)

2(lm)

Thus

E (2U,)k} I- 2kr(n + k - i + 1)
r(n - i + 1)

which implies

,E{U,k) =rF(n + k - i + 1)
r(n - i + 1)

Since the U, are independent, then

~P (n+k-i+l)I( pui, = r(n-igl)
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which implies

E {[det Wlk} = [det S]k l "( + k - i + 1)
i=i (n-i+1)

=[det Ik cp(n + k)rp(P1)/2  k crp(n + k)

rp(p-l)/)= [det E crp(n)

In the special case of k = 1, then

{[det W]} = [det E] -r(n + 1)(n)... r(n+2-p) = [det E] r(n + 1)
r ~~~ - 1) ..rn+ I-p) rn+ 1- p)

[det n [det El p (;)
(n - p)! P

This is the same answer we got in theorem 78.

When k = 2,

detW]2}( + 2)r(n + 1)... r(n + 3 - p)

{=[det 2  r(n)-(n-- i)... I-(n + 1 - p)

=[detE1
2  r(n + 2)r(n + 1) = [det E]2 (n + 1)!n!

r(n + 2 - p)r(n + 1 - p) (n + 1 - p)!(n - p)!

Therefore,

E{[detW}= [det ']2 [P!]2( P 1) (n)
The variance of det W is

varfdet W} = E {[det WI2 } - [9{[det W1}1 2

-[det E) 2 [p!]2 (n + 1) ( ni -()2] = [det S]2 [p!]2 (n) ( p+
0
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Theorem 80 Let W -. CWp(n, E) where E has eigenvalue decomposition E =

LAA2LrH. Let IV = 2W - A(W) and A(W) is a diagonal matrix whose diagonal

entries are the elements on the main diagonal of W. Then the characteristic

function of tr IV is
P] -

0trW(t) A k 2n( k2 -2 it)-n = [det(Ip - iA2t)]
k=1

This is similar to equation (5.58) of Goodman [92]

Proof. This proof is essentially due to Goodman (p. 169)[92],

lbtrW(t) = 4W(Ipt) = tw(T)

where t is a scalar. By Goodman equation 1.7, obW(T) = [det(Ip - iYT)]-n

where T E CPxP. Then

4trWV(t) = [det(I. - iEIpt)]-n = [det(Ip- iEt)]--

Using the eigenvalue decomposition, we get

4trW(t) = [det(Ip - irA2rHt)]-_n = [det(rrH _irA2rHt)] -n

= [det [det(Ip - iA2t)]- [detH]-

- [det FF-HI ' [det(Ip - iA2t)] n = [det(I, - iA2t)]-'*

Since a common use of a characteristic function involves setting t = 0, we with

to preserve evidence of dependence on A2. So,

Ot, M = [det A2-* [det(A2- iIvt)]- = k A- 2n(Ak 2 - it)-n
k=1
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0

Note that since TH = T = It where t E C, we know t E R. Therefore,

A•t"W(t) exists.

Note that tr W is a function of only those elements on the diagonal:

Will, W22,.., IWP

Consequently, we can work with the characteristic function of the joint distri-

bution of

(W ill • I' W PP, 2W R1i2 ' ' l2W t(p -O),p)

and still get an answer to the question being asked about tr W.

Theorem 81 Let W - CWp(n, E). Then Ef{tr W} = n tr E. This is the com-

plexification of theorem 17.15(e) of Arnold [31].

Proof. This proof is an application of the concepts developed in section

B.4. By theorem 80, the characteristic function of tr W is given by

4btrW(
t ) = [det(lp - iA2t)i-n

where A2 is the diagonal matrix of eigenvalues of E and t E R. Taking the

derivative, we obtain the following.

fdet(Ip - iA -n Idet(Jp - iA - det(Il _ iA2t)YtI

A t)= -a -

k=l
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We apply the chain rule.

P P

det(Ip - iA2t) = (-iA•) H1(1 - kA~t)
at 1=1 k=1

k#LI

Putting the problem all together,

n n+)P P

[det(Ip - iA2t)] = in [det(Ip - iA2t)]-(n+1) y. A Il(1 -I At)
5t 1=1 k=-1

k#l

We evaluate at t = 0, and we obtain

0 [det(Ip - iAit)n n• 2 intrA2 = intrXEat 1---

1=0

Recall that

a
£{tr W} = - trW(t) = (--i)intrE = ntrE

t=0

Theorem 82 Let W - CWp(n, E). Then

£{(tr W) 2} = n2(tr E)2 + n(tr E2)

and var(tr W) = n(tr E2).

Proof. This proof is an application of concepts developed in section B.4.

By theorem 80, the characteristic function of tr iV is

-OtrW(t) = [det(Ip - iA2t)]-
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where A2 is the diagonal matrix of eigenvalues of E. The first derivative with

respect to t is
2t)]-n 2)] (nII VP P2t

[det(I, - iA2t)]- = in [det(I, - iA - A 11 (1 -Atat 1= 1 k= 1
kol

Apply the chain rule for the second derivative.

-- 2 [det(I, - iA2t)-

in [det(Ip - iA2t)] (+1)] 11•(1 - iZAt)

5-1=1 k=1

k#J

+in - i2t)j (n+i) a 2= i~)
+idet(Ip -A

2det( - ,l 2t)]-(n+2) 2P 2t

[det(i- iA2t)](+) = -(n+l) [det(Ip - ZA t)] E(-i)AI JI(1-iAkt)
kt 1=1 k=1kot

a P P P P P

1=1 k=1 I---1 m=l k=l
kol Mogt kol

k#rm

We evaluate at t = 0 since we want

, 2

0 [det(I• - iA2t)]-(n+) = i(n+ 1)(tr E)

a=0

.. ~~~~ = 0
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19 P P P P P

2o-• 1 1I(i - iAt) = -i Z : A = -i I3A (-A + tr E)
L=1 k=1 1=1 m=l 1=l

1=0

p

-i (-AZ + A2 tr = i tr(E2) - i(tr E)2
I-1

Assembling all the parts, we get

0-2- [det(Ip - iA2t)] - = in [i(n + 1)(tr E)] + (in[i] [tr(r,2) - (tr ')2])

= -n(n + 1)(tr E)2 - n tr(E2 ) + n(tr E)2 = -n 2(tr E)2 - n tr(E2 )

Then

£{(trW) 2} = (_i)2a-2 IttrW(t) = n2 (tr E)2 + ntr(E2 )

t=0

The variance of tr WV is obtained from

var(tr W) = E{(tr W) 2} - [C{tr W}J 2

From theorem 81 we have [E{tr W}] 2 = n2(tr E) 2. Thus

var(tr W) = n2 (tr E)2 + n tr(E2 ) - n 2(tr E)2 = n tr( 2 )

0

Theorem 83 Let A CWp(n, E). Let A = THT where T is upper triangular

with positive real values on the diagonal. Then the probability density of T is

2Petr(-E-2 THT) k2(,-k)+f()=[det E]n crp(n) 1-okk
k=1
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This is Goodman equation 5.51 [92].

Proof. The density for A is given by

g()=[det A]n-p etr(-E-'A (A)
g(A) = Idet E]' C1p(n)

The Jacobian for the change of variables from A to T is given by Goodman

equation 5.25 [92] and by theorem 27 as

p
J(A -- T) = 2P 1•kk'2Pk+

k=l

Performing the change of variables gives us

[det(THT)] np etr(-E27lTHT) p2pk+
f (T) -- [d2P'~ 1I 2 kk fl[ J k=l

Note that

[det(THT)] -'= [det(T)]2 ("-p = J÷ 2(?p)kk
k=l

The final result is by observing that

2(n - p) + 2(p - k) + 1 = 2(n - k) + 1

(Wll W 1 2

Theorem 84 Let W ,-, CWp(n, E) where W = and =

W21 W22

( l: E:: ). Let V = Wi- W12 W; 1 W2 , and Ell.2 = E 11- 2r2,
F121 E22/
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where Wil and Ell are q x q. Then V , CWq(n - p + q, E11.2) and V is in-

dependent of W12 and W22. Also, W22 - CWp-q(n, E-22), and (W12 I W22) -

CNq,(p-q)(El2E 1-W22, F11.2, W 22). This is a complexification of Muirhead's the-

orem 3.2.10 [187].

Proof. This is a complexification and expansion of Muirhead's proof. Let

B = E-1/2W(-1/2)H. Note that W = WH, E 'H, where E1/2 is the

positive definite square root of E. E = , /2(131/2)H by theorem 119. Perform

the following change of variables. Let V = W1 - W12 Wý2~'W 21, B 12 = W12,

B 22 = W22. Recall that B 21 7' W21 = WH2. Thus,

(dW) = (dW,,)A(dW12) A(dW22) = (dV) A(dBl2)A(dB 22)

Recall that

det W = (det W22 )Idet(Wii - W=2W;1W21)] (det B22) det V

and

det E = (det E 22 ) det El. 2

Let

CI1 C12

C21 C22

where C1i is q x q. Then

C1 1  C12 V. .B. 2 BB 2- B 1 2

tr(E-7'W) = tr 22I I
C21 C22 B21 B22 J,
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-tr(CIIV + C11BB1 2B~B21 + C12B21) + tr(C21B12 ± C22B22)

=tr(Cil V) + tr(CII BBi2B&B) + tr(C12 B21) + tr(G2i B12 ) + tr(C22B 22)

Observe that

tr[Cii(B 12 + Cj 'C2  22) 1 ( 12 + Cjli 2 22 H

+ tr[B22 (C22 - C21 Cjj 1-C 12)] + tr[IInV]

=tr(CjjB1 2B 1 (Bj2 + Cjý 1 CB2Br) H] + tr[C2(B12 + C G ) H

+ tr[B22 (C22 - C2,C1C1 C12)] + tr(CnVI

-tr[CjjB 12Bý2BH] + tr[CjiB12B;ýlB2HC"iHI ± tr[C 12B

+tr[Cl2B22HCfHCii )+tr[B22Cra - tr[B22C21CjCI2 ] +t[ClIV]

Recall that B22 = B H, B21 = BH, C2, = CH~, C-1 = Cj.-H. The expansion

continues as

tr[CIB 12B 1 'Bra + tr[C 11B12C21 C,1  rIiBu

+ trCi2 2 2Ci~j'] + tr[B22C22] - tr B- 2 1 j' C12] + tr[CI 1V]

Recall that tr(ABC) = tr(CAB). This allows us to produce the expansion

tr[Cii B12B-1 B211 + tr[B 12C211 + tr[C12B.21] + tr[CI-2f)2 -'?I~j

+ tr[B22C22] - tr[C 2 B22C21(CI I + tr[CI 1V]

= tr(Cui 22B~ ~a r(11 2C il + tr(C12B,211 + tr[B22C 2 1 + tr[C~IVI
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= tr[C1iV] + tr[CnIB12B-1 B21l + tr[C1 2B211 + tr[C21B1 2] + tr[C22B221

This is the same expression we had for tr[ -1 W]. From the partitioned matrix

inverse, we know that

Cl1 = = E- (•1- '2E;21)-1

_'C12 =- 1_

C22 - C21CI 1C12 = 22

C5'C12 = -E122

To see this, look at the inverse from both directions. From

C E -1 =1 C1 1 1- 7 22•,.1

C21 C22  -E1 2 12r11.2 22.1

We observe Cl1 = W2 and C22 - C21C-'C12

"-22. - r,22 l2E11.2,EI.2E11 'J12 ' 2 2 .1

-( E21 ,, 112)E2. =•
F= 12(22 =12. 2

From

~C-1
F, C-1= )l 1 12 -I

E21 E22 -Ci'C 21 Ci1.2 Ci,'.

we observe

= C, C1 2CC 22. 1 = CC

Recall that the complex Wishart density function is given by

- Idet Wj"-p etr[-•-'-W1f(W) - [det El"CF',(n)
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Note that Idet WI = det W since W is positive definite. Substituting in our

results, we get

f(w) = I(det B2 2)(det V)I--P

[(det r' 22 ) (det r11.2)1' ,p(p-l/rI r(n - i + 1)
i=1

x etr[-CuV - B22(C22 - C21lC) 1C12)

-CII(BI 2 + C IC 2 B22)B-1 (Bl 2 + C11C 12B22)H]

(det V)nP+q- etr (-E'-.V)

(dt)-n,-p+,l7q~ql
(det 2II.2) Fq(q-1)/2 rI F(n - p + q - i + 1)

i=1

(det B 2 2)f-P+' etr (-E' B2 2 )
)n,(-q)p-q l/ p--

(det E22) (n - i + 1)
i=1

etr Pi-1. 2(Bi2 - Fz1F; B22)Bý2(B12 - E1, 2)
x

Note that the exponents of ir obey

11
I q(q - 1) + 1 (p - q)(p - q- 1) + (p - q)q = q(q - 1) + 1 (p - q)(p + q _ 1

22 2 2
1 1 1

1 -q(q - 1)+ I(p -q)(q - )+ 1 (p -q)p

1 •p(q -- )+ 1 p(p - q) = p(p -1

Also note that

= r(n-p+q)r(n-p+q- 1)... r(n - p+ 1)r(n)r(n. - 1)... (n-p+q+ l)

P

= r(n)r(n - 1)... r(n - p + 1) = Ijr(n - i + 1)
i----
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Thus, f(W) is the product of three density functions. The first one is the

density function for V. It is distributed CWq(n - p + q, E11.2). The second

term is the density function for B22 = W22. It is distributed CWp-q(n, E22).

The last term is the conditional density of B 12 = W12, given that B22 = W22

is fixed. It is distributed

C Nq,(_q ) ( E ,2 E22-W22 , E1.2 , W•22)

In conclusion, V is independent of W22 and (W1 2 I W22), and therefore is

independent of W12. 0

Corollary 23 Let W -. CWp(n,E) and let X = W2 - W2 1 WýJW 12 and

E22.1 = E22 - E 21 ,Y-1' 2 where W22 and E22 are (p - q) x (p - q). Then

X - CWp._q(n - q, E 22.1) and X is independent of W 21 and W11. Also, W11 -

CWq(n, Ell) and (W21 I W 11) - CN(pq),,q(2lEl-1W1,E22.i, W1l). This is a

corollary to a complexification of Muirhead's theorem 3.2.10 [187].

Proof. This follows the general logic of Muirhead's proof of theorem 3.2.10,

modified by the different partition of interest. Let B =E-1/2W(r-1/2)n.

We perform the change of variables X = W22 - W21W1 1W12, B12 = W12,

Bi1 = W1l. Recall B21 = W21 = WIH2. Then

(dW) = (dW 1) A(dW12)A(dW22) = (dBii)A(dB1 2)A(dX)

Note that

det W = (det W 1) det(W 22 - W21W••W1W12 )
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by lemma 45. thus

det W = (det Wl) det X

and

det E = (detE~22) detr'22.1

Let

C11 C12]

[C21 C22 ]

where C11 is q x q. Then

tr(E-1 W) = tr ([I C12 : B11  B12
C21C22 B2, X +B2,B-' 1 B12

=tr(CuBu + C12B 21) + tr(C21B12 + C22X + C22 B2 1Bj11B1 2)

C21 C22 ) - 1 2 121EI1.2 ~22.1)

C22 = F2.

-1. - IF-F -

(II C1C2'~ ==l -(-lll 2F,21r 2 2.1-22 lPI El.2 =

'11 . - ' 1E2 1.

E = C-1 Ell E12 C 1 1 .2 =Cl 2.
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Then

tr [C22 (B21 + cý2C 21 B, I) B-1' (B21 + C;21C 2, BI)]

+ tr IBI, (CII - C12Cý21G 21)J + tr (C22X)

=tr [CUB21BýI' (B21 + CG CrBui1) H] + tr [C2, (B21 +C;12,BI

+ tr [BU1 (cH1 - CUC;27C2)I] + tr (C22X)

=tr [C22B2iB-T1 B2Hj] + tr [CB22BVB1BHc~CH]-

+tr [C21 B2H"4 + tr [C2,B CIC1H2

+ tr[BuICu] - tr [BllIC~12Cj2lC] + tr (C2 2X)

Recall that B11 = BHI{, B12 = B2H{, C12 = C2"
1 , G21 = Cj2. We use this to

simplify the notion to

tr [C22B2 jB-T1 BHI• + tr [C22B2lC 12C;2] + tr [C21B121 + tr [C2jBjjC12Cj2 I]

+ tr [BI, C11 - tr IBHC12C;21 C211 + tr [C22X]

=tr [c2 2B2jBiiIB 2HfI + tr [B21C12] + tr [C21 B12] + tr [C21 B11C12C-'J

+ tr (Bu Cu]j - tr [B11C 126121C 21] + tr [C22X]

= tr (C22B2, B-'iB2HN + tr [B21C12 1 + tr [C21B121 + trt[BIiC11] + tr [C22X]

= tr [C22X] + tr [C22B2 i1iý1B•] + tr [C21B121 + tr [C12B21] + tr [CuIBit]

tr (r,-,W) = trt[CiiBl] + tr tCuB21] +- tr [C21B121

+ tr [C22X] + tr fC22B2 ,Bi 1B fHI
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C2- 2. = (E2 21 Ell12

C11 -C1 2C~22 C 1 1

VC1= ->221E11

We recognize some of the pieces as follows.

Idet Wj- h P = J(det Bl) (det X) I n-

and

=exp I-tr [C22X] - tr [B11 (Cu - C12Cý1C21)]

- tr C022 (B21 + C2-2C 21 Bn) B-111 (Bu + Cý.C 2lBjl)Hj I

[det >L$' = [(det Ell (det E22.1)In

c1'p(n) - 7.p(p-1)/2 fi (n - i + 1)

We expect

CW'p(n, E) = CWp..(n-q, F-22.1)*C1'q(n, E11)'CN(p-q),q(XE2l1l 1' W1l, E222.1, W11)

We look at the density functions.

f [CW,,(n, EhI _ Idet Win-' etr [-E-1 Wj

f *~* - det X1~ etr I- 22AX}

f[CWp..q(fl - q, E-22 .1)] = (det E22.1 .)fl-q CF,-,q(ta q)

f[C q~l,~i~ = (det Thi )f Clrq(n)
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et -(E22.1) 1 (B21 - E-1Ew) w1-1 (B1

To show the claimed product is true, we observe

Idet XI n" Idet Bil In = Idet Xln-p Idet Bil I'- = Idet Win-p

Idet Bi1 jp-q

crp-q(n - q)cr,(n)irq(p-q)

- ~ [pljqF(n- q - i +)] [w(1)2 [T 1(n - i + 1)]

Exponents of ~r are

1 1 2

The prdc of( th Gam fucin is+-~q +-~p-q

-( -q(p-= [I + 2) +±q~+- ] [P(fpl-iq(+ q-1)]+qq )

rp-p
[Ijr~-qJ~-i+l 1)A~nil

i~qi=

0P
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Theorem 85 Let W - CWp(n, E), E > 0, and let A = W- 1 and G = E-1.

Then the density function of A is

A - CIWp(n, G) = Idet Al-(n+p) etr(-GA- 1) [det GIn (dA)
crp(n)

This is the Complex Inverted Wishart Distribution. This is a complex gen-

eralization of Mardia et al. equation 3.8.2 [171], and also a complexification

of theorem 7.7.1 of Anderson [26]. The real variables case is also reported in

Siskind [247].

Proof. This is a complexification of Anderson's proof. Recall that the

density for the complex Wishart distribution is given by

fw(W) = Idet WIj-P etr (-E-2W) (dW)

Tp(p-1)/2 (det El i] r(n - i + 1)

The Jacobian for the complex change of variables W = A 1 where WH =

W > 0 is given in theorem 40 to be J(W -- A) = Idet aj-'P. Thus fA(A) =

fw(A-I)J(W -- A).

fA(A)= Idet A-' I-p etr (-GA-1) Idet A1-2p

[det G-'1 Irp(p-)/
2 

ri F(n - i + 1)
i=1

Note that -n+p-2p= -n-p= -(n+p).

fA(A) = [det G]T Idet ai-(n+p) etr (-GA-1 ) = JAI-(n+p) etr (-GA-') [det G]I

Irp(p-l)/2 r r(n - i + 1) cr.(n)
t=1

0 =i,~aI ~ a adm iiil



630

Theorem 86 Let W -, CWp(n, E), E > (, n > p. Then

£{Idet W-'l} = 1
p!( (";)[detEr]

This is a complexification of Arnold's theorem 17.15(c)(ii) [31], which was

stated without proof.

Proof. This proof was motivated by Mardia et al. (1711 (p. 487) equation

B.3.6. First, recall for the X2 distribution that if x _ X2 then

E{xkl = 2k( 2 +k)

r (M)

When k = -1 then

217(m) 2r(m-1)r( i) =2 1

This implies E{ } =
rt m-2"

By theorem 78, we know E has the same distribution as f' Ui
i=1

where Ui are independent and 2Ui _ X2_+l). Thus, {' W,} has the same

distribution as - • where 2U -,, X2

X2(n - i+l
£ -•i I= 2(n - i+1)- 2--(n -i)

implies C{ -} = n 1;. Therefore,

£{Ide( I1)} p 1
j=1 (n - *

E{Idet(W-')} II = (- II det(FW'

Ie W 1 ie f) Idet, I III
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1 1
(n- 1)(n-2)...(n-p)[det El p! (;') (det E]

0

Theorem 87 Let W -.i CWp(n, E), E > 0,n > p. Then £{W-'} = -- E-1 .

This is a complezification of Arnold's theorem 17.15(d) [31], which was stated

without proof.

Proof. Let V - CWp(n, A2) where A2 = diag(A,.-. A2). Let a be a

column vector with zeros in every position except for a 1 in position i. Let V"

be the element in position (i, i) of V- 1 . Then by theorem 64,

2 aHA- 2a =2 2 0
aHV-a =Vii - i XV(n-p+,)(0)

Then
£1AVi=1_ 1

2 2(n - p + 1) - 2 2(n - p)

which implies £{Vi}= ' Thus C{V-'}= - A-2 where n > p.
np A n-P

Let E = FA2FH, W = FVFH. By theorem 54,

W ~ CWp(n, rA 2rH) = CWp(n, E)

Then

rEf {v-,FrH =- £{PV-IFHI = E {(rvr H-I}I = E (W-1I

I FV_,FH I E-
n-p n-p

where n > p.
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Note: E{IW-111 # 1,6{W- 1}1. In fact,

(n -1p)! (pw-1( 1)

0

Theorem 88 Let W , CWp(n, E), E > 0. Then S{tr W} = n tr E. If n > p

then E{trW-'} = n---p-trE-
1 . This is a complexification of Arnold's theorem

17.15(e) [31], which was stated without proof.

Proof. By theorem 52, £{W} = nE. The trace function is merely a linear

combination of elements on the diagonal of a matrix. Expectation is a linear

operator. Therefore

9{tr W} = trSf{W} = tr[nE] = ntrE

By theorem 87, if n > p then £{W-'} = '_pE -'. Therefore,

1
Ef{tr W-1 } tr E-1

0

F.4 Tague and Styan Properties

This section is included to demonstrate the usefulness of the statistical theory

developed during this thesis research. This is all work by Tague [264], slightly

reordered in places and with the derivation of some constants expanded. It is

also included to collect work in the literature into a unified presentation.
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Theorem 89 Let W -.s CWp(k, I), U E U(p), and A E CP'P. Then

g(A) = .{etr(AW)} = £{etr(AUHWUI = g(UAUH)

This is from Tague [264].

Proof. By definition of an expected value, we define g(A) as follows.

g(A) = [ etr(AW)fw(W)(dW) = / etr(AW) Idet WIkp etr(-W) (dW)
JW>O Jw>O cFp(k)

Now consider what happens under unitary similarity transformation.

g(UAUH) = w>oetr(UAUHW)fw(W)(dW)

= j oetr(AUHWU)fw(W)(dW)

by property of the trace function. Now, perform a change of variables Y =

UHWU,which has the inverse relation W = UYUH. By corollary 7, the Jaco-

bian of this transformation is 1. Thus

g(UAUfH) = yetr(AY)Idet(UYUH)Ik-p etr(-UYUH)
g H >o CrF(k) (dY)

= f etr(AY) Idet(U)det(Y)det(UHl Ik-P etr(-UHUy) (dY)

y>o crp(k)

We note that UHU = I because U E U(p) and also idet(U)det(UH)I = 1.

Thus we have

g(UAUH) = etr(Ay) det(Y,)k-p etr(-Y)(dy) = g(A)
>0 crp(k)

0
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Theorem 90 Let W ,- CWp(k, E), E > 0, with deterministic matrix A E

CPxP. Then £{WAW} = k2EAE + ktr(AE)E. This result was proven for

the complex case by Tague [264], motivated by Styan's treatment [262] of the

problem for the real case. The result is not a simple extension of the real case.

Proof. Let W -• CWp(k, I). Recall from lemma 58 that for random W r=

CPxP and fixed T E CPxP that, using a moment generating function argument,

E{WijWm } = bibijbim + b2,:imj6

1, j=k

where bjk is the delta function 6
3 k = and bl, b2 are constants. By

10, j k

lemma 25

(WAW)im = 1: 1 AjlWijW1,,
j=1 1=1

and thus

£{(WAW)im} = £ E EAjIWijm} = E AjI£ {WijlW1.}
Ij=I 1=1 I j=1 1=1

P P 
P

= 1: A 1 (bi6ij6im + b2 bimbj,) = Aimbi + b2bii ZE Ajj
j=1 1=1 j=1

= biAim + bimb2 tr(A)

Then for the whole matrix,

£{WAWI = blA+ b21tr(A)

where W - CWp(k, I).
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We need to evaluate b, and b2. Suppose we let A = eie4 where e, is the Pth

standard basis vector, which is a zero vector with a 1 added to the Pih element.

Then

E{WAW} = bleeff + b2 1

Further,

J'Ef{WAW}ej = £{eHWeieHWei} = b, + b2 = E{Wi}

By corollary 17, Wij -. CW1 (k, I1). By theorem 53, then 21Vj ,, x2k(O). From

properties of the Chi-square distribution, theorem 142, we know E{W2} =

k(k + 1). Recall that it is (2W22) that has the X2,k(O) distribution, not Wl,.

Substituting into our earlier result,

E{Wi} = b, + b2 = k2 + k

Now consider off-diagonal elements of WAR.' Let A = ejH where i j.

Since E' = I, then theorem 56 tells us that tf he set of {Wij} are independent

random variables. Thus

, I,'Al•'"},, = I{ W ,,lU,, } = CAW.. }E{ ,;, } = A- A. = 2

and also

(_ ( I{( +h.•l tr(r/)}•., + b b-tr(t,('11 ) = b,

lherefore b, = V' which implies A0 + b2 = A2 + k which give, ts bh2  A' k. ['hejI

E{ll'.II'} A'..t + klItr(,t) (F.2)

I IIIIM'
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where W - CWp(k, I).

We now want to consider the case when W , CWp(k, E) for EH = E > 0.

By theorem 119, the decomposition E = GGH exists. G-' and (G-I)H exist

since E > 0. By theorem 54,

G-1WG-H ,., CWp(k, G-'Ea-H) = CWp(k,I)

Applying equation F.2,

£{G-IWG-HBG-IWG-HI k2B + kltr(B)

for B E CPxP. Then

GE{G-'WG-HBG-'WG -HIGH - £{WG-HBG-'WI

= k2GBGH + kGIGH tr(B) = k2GBGH + kGGH tr(B)

Let A = G-HBG-l. Then B = GHAG, and

£{WAW} = k2GGHAGGH + kGGH tr(GH AG) = k2 EAE + kE tr(AE)

which is the main result. 0

Corollary 24 Let W -, CWp(k,E). Then £{W 2} = k2E2 -A kEtr(E). This

simple special case was first produced for the real variables case by Styan, and

then rederived for the complex case by Tague.

P)roof. Let A = I in theorem 90. 0
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Corollary 25 Let W - CWp(k,E) and a E CP. Then £{WaaHW} =

k2 EaaHr- + kaH~ar2.

Proof. Let A = aaH in theorem 90. Note that tr(aaH) = traHEa) = aHl2a

is a scalar. 01

Corollary 26 Let W -, CWp(k, E) and a E CP. then var(Wa) = kaHaE.

Proof. .{Wa} = E{W}a = kFa by theorem 52. By definition,

var(Wa) = £{(Wa)(Wa)H} - £{Wa}E{(Wa)H}

- WaaHW} - k2 EaaHE = k2EaaHE + kaH EaE - k2'3aaHE

from corollary 25. The final result is

var(Wa) = kaH aY2

0

Theorem 91 Let W- 1 = V -, CIWp(k, I), U E U(n), and A E C1Px. Then

g(A) = £{etr(AV)} = E{etr(AUHVU)} = g(UAUH). This property was taken

from Tague [264] with permission.

Proof. This is analogous to Tague's proof for the case of Z - CWp(k, I).

We define g(A) as follows.

f etr(AV) Idet V -(k+p) etr(-V-1 (dV)g(A) = I CFp(k)

m • m m mV |o
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by the definition of an expected value, where the density function comes from

theorem 85 for the complex inverted Wishart distribution. Now we consider

what happens to g as we use UAUH as the argument. Following the definition,

then

g(UAUH) = v>oetr(UAUHV)fv(V)(dV) = v>o etr(AUHVU)fv(V)(dV)

since tr(XY) = tr(YX) as a general property of the trace function. Now

perform a change of variables Y = UHVU. The inverse transform is V =

UYUH. The Jacobian of the transformation is 1, by corollary 7. Thus

= etr(AY) (uYUH)j-(k+")etr [-(UYUH)-1]

g(UAU 1 1 ) =Y> e( CF(k) (dY)

Idet (Y)V-(k+p) etr [-UY-.1UH]/-Y 0etr(A Y ) .(d r)
Y> Crp(k)

= / etr(AY)Idet(y)I-(k+p etrt-Y-I](dY) = g(A)
Y>O CF p(k)

0

Theorem 92 Let W, - CWp(k1 ,v-) and W2 - CWp(k 2 , E). If k, > p, then

,C{W2W;IW•} = k('k,-P, This is a complexification by Tague [264) of a

corollary Styan [262] provided for the case of rcal variables.

Proof. First note that

C {V 2mWiW 2 = I El1 {{W 21 inlinIW I 1VI
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When W1 is fixed, then theorem 90 tells us

E {WW WI W1} = k2 ,w~j + k2 tr(WT2 -)F,

from theorem 87, E IW 1"-A = k1 p-1. We require k, > p to ensure the

denominator is not zero. Also, k1 > p ensures WT1 exists. Continuing, taking

the expectation with respect to W1, we obtain

£ W2 Wi-W 2} = kY2 ,(k 1 - p) E + kc2 tr [Ic L ") E -1F

=k ( k p) ±(kkptr(IP)E = k2 (k2 +P) E

Theorem 93 If W1 and W2 are independent, Wi - CWp(ni, E), then

W, + W2 - CWp(n, + n2 , E)

This is a complexification of Arnold's theorem 17.15(f), which was stated with-

out proof.

Proof. From theorem 75, the characteristic function of the associated ran-

dom variable Wi is

4D,, (T) = [det(I. - iET)]-"'

Since W, and W2 are independent, the characteristic function of the distri-

bution of the sum is the product of the individual characteristic functions.

Thus

OWw+W,(T) = Ow,(T)W, 2(T) = [det (I, - iY2T)]-"- [det (1p - IET)]-n2
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= [det (Ip - i2T)]-(n1+n2)

This is the characteristic function of the associated random variable corre-

sponding to the complex Wishart distribution CWp(ni + n 2, E). 0

Theorem 94 Let A - CWp(n, Ip) and B - CNp,m(0, Ip, Im) be independent

complex random variables. Let Z = A + BBH = CCH and B = CU. Then

Z , CWp(m + n, Ip), and the density of U is given by

CJp(m + n) det (I- UUH) In-p
g(g) = 7mpcrp(n)

This is a complex version of the derivation given by Anderson (p. 302) [26]

for the real variables case.

Proof. The concept of solving for the joint distribution of Z and U and the

recognizing their independence is due to Anderson. From theorem 93, since

BBH CWp(m, Ip), we know

Z - CWp(n + m, Ip)

The joint distribution of A and B is

f(A, B) = CWp(n, I) • CNm,p(0, 1m, IP) = Idet AInP etr(- A) etr(-BBH)
CFp(n) 7rMP

Note that the density of Z is

Idet ZIm+n-P etr(-Z)crp(m + n)
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We want to find the joint density of Z and U. Begin with f(A, B) and ma-

nipulate it until we have a function that includes g(A + BBH) as a factor.

f(A, B) = det (A + BBH) Im+n-P etr [- (A + BBH)] CFr(m + n) ×
Crp(m + n) crp(n)

Idet AIn-p 1

Idet (A + BBH)I--P Idet (A + BBH)I'rn 7P

Note that the term

det (A + BBH) m+n-p etr [- (A+ BBH)] Idet Zlm+'-p etr(-Z)

CI'(m + n) CFr(m + n)

= CWp(m +n,I)

already accounts for the change of variables from (A + BBH) to Z. Thus we

only need to include the Jacobian for the change of variables from B to U.

J(B -, U) = Idet CI2m. Thus g(Z, U) =

Idet Zlm+'nP etr(-Z) CIp(m + n) IdetAIn-p Idet CI2m

CFr(m + n) 7rmPcrp(n) Idet(A + BBH)In-p Idet(A + BBH)Ir

where we still have the substitutions to complete. For this, we still have an

identity to compute. From

Z=A+BBH = CCH

we have

A = Z- BBH = CC"._ (CU)(CU)H = C(I - UtJH)CH

Then

jdet Al Idet {C(I - IIUH)C"}IIdI l_ 7H

Idet(A + BBH)I Idet(CCH)l Idet(1 -
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and

Idet Cl2

ldet(A + BBH)I

We substitute our identities to obtain the joint density of Z and U.

g(Z U) = ldet Zlm+P etr(-Z) C p(m + n) Idet(I - UUH)In-P

Crp(m + n) Crp(n)7rmP

We note that Z and U are independent by the Neyman-Fisher factorization

theorem. We know the density of Z is CWp(m + n, I), and thus the density

of U is

cr-(m + n) Idet(I _ UUH)In-P7r) •pcr,,(n)

0

Theorem 95 Let W - CWp(n, E), E > O,n > p, and rank(Aqxq) = q. Then

(AW-I AH)-1 - CWq(n - p + q, (AE- AH)-I). This is a complexification of

Arnold's theorem 17.15(g), which was stated without proof. This is also similar

to Muirhead's theorem 3.2.11 for the real variables case.

Proof. This follows Muirhead's proof, except that this version accounts for

the structure of complex variables.

By theorem 119, there exists a positive definite complex matrix V2/2 such

that E = (V1/2)(I/2)H. Thus, E` = .--Il2>--12 Let B = E-

which implies that W = E1/ 2B BVO2 . By theorem 54,

B ~ CWq(n, -H2-lr 1 /2 ) = CWq(,,., E-I/ E-H2 = CWq(n, I)

Ci'(, CW(n 1q)slmamwmm I
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Let R = AE-H/2, which implies A = REH/2. Then

(AWlA Hrl = [(REH/2) (>,1I2BEII/2)-' (REYi/2) H]l

[REH/2-H/2 B-1 E-1/2E1/2RH = (RB-l Hl

By theorem 125, R can be written as R = L(Iq, O)H where H is a p x p unitary

matrix, and Lqxq is a positive definite matrix. Then

(AW-IAH)- 1 = (RB- 1 RH)- 1 = [(L Iq,,0/ H) B- 1 (L {If,,} H)H]-

07 )

where

C = HB-1 H H CWp(n, HI;H) = CWp(n, Ip)

by theorem 54 since H is unitary.

D1 l D12 C1 C 12

Let D = C- 1 - and C where Cla and DII

D21 D22  C21 C22

are q x q. Then

(AW-AH)-' = (RB-1 RH)-1 = L-H(C-')-'L-1  L -H D-1L-,

Recall from lemma 34 (the partitioned matrix right inverse) that D-j' = Cl1 -

C12Cý1 C21. Dill corresponds to V of theorem 84. By that theorem, Di-l
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CWq(n - p + q, I,,). Then by theorem 54,

(AWI'AH)-l = L-HDi1 IL- CK'q(n - p + q, L-H IqL-1)

==CWq(n - p + q, (LLH)-l)

Consider (Ar,-AH)-l. Expanding,

(A~lAHl (A2~r-21/2 Ay - r 2 H/2E2 H/2 -1/2(RY2H/ 2 )H)-l

E RH/2E-H/2?-F1/2El/
2 H-l =(R)

[L ( I 0)HHH(I'j LU] 4L& ( o0) IP(4)LH3

=(LIqL
1)'-l (LLH)-l

Therefore,

(AW-1 A Hr 1  C Wq(n - p + q, (AE-1AHf)

0

Lemma 23 Let W- 1 -CIWp(k, I,,), k > p + I and A E CPI". Then

,QW- AW1 I= d, A + d 2 1 tr(A)

where

d1~~ (-+ ý1)(k -p-1
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and
1

d2 -
(k-p+ 1)(k -p)(k -p- 1)

This is Styan's corollary 4 (part iii) [262] and theorem 3 which has been com-

plexified by Tague [264].

Proof. By theorem 91, W- 1 satisfies the property g(A) = g(UAUH) for

unitary U E U(p). By lemma 58,

E{Wi"w m} = dibijb6m + d2binmjl

where W" is the element (i,j) of W-1. Recall that

p p

(W-1AW- 1)im = E > afWijW'm
j= 11

and thus

-6j(w-'Aw-')jm} =C E E I2•w'jW'm E E1 AjE {w'jw'}
Ij=l /---1 j=l 1=1

P P p

Then

E.{W-AW-1} = djA + d21tr(A)

where W 1 --. CIWp(k, I).

By lemma 40,

-{ - y(yHy)-lyHn Z

ZII - IY l lYl i l IZ
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where W is partitioned as

yHy YHZ

ZHY ZHZ

with Z being a column vector, and el is the standard basis vector consisting

of all zeros, except a 1 in position i. Also,

1

Z- {I - Y(yHy)-lyH} Z

This product is

W"WPP = ef'(yHy)-I e WPP + ef(yHy)-IYH Z12 (Wpp) 2

We want to find 1{W "WPI}.

Since W-1 ,- CIWp(k, I), then W -,, CWp(k, I). By theorem 64, elements

on the diagonal of W- 1 have the distributional property

2WVJj - X2(k-p+l)(0)

In corollary 23, if we let

X = W22 - W21WZW12 HZ - ZHY(YHY)-IYHZ

we then see that X is independent of W11 = yHy, and hence X is independent

of Y. X is (WPP)-'. Therefore, WPP is independent of Y. Then

• I •I i = E eff(YHYfeiWPP + P(yHy)IjHz 2 (Wpp)2}

=F f {eY(YHY)-ejj} f {WPP} +E I {Ie(YHY)_IYHZI 2 (WII)2}
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Now look at the first term. From theorem 87 we know £ {WPP} = /k-- By

theorem 55,

YnY = wil , C-w_(k, p_1)

Again, applying theorem 87, we know

k -p

Substituting these results we find

eHE {(yHyrl}j eE {wpp k-+ )(
for k > p.

Now, consider the computation

.F {(Wpp) 2 IefI(YffY)'yHZI 2} = £- {E {(Wpp)2 leH(yHy)-1yHIz12 y

Since

2 22W;pp - X2(k-p+l)(O)

from the X2 distribution we know

{Q(Wpp) 2 } 1

2" = [2(k-p+1)-2][2(k-p+1)-4]

1 1

[2(k-p))[2(k-p)-2) 2 [4(k-p)]lk-p-1

Therefore

E{I(WPP)2} (F.3)[k-p] [k-p-i]
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for k > p + 1. Continuing,

S{eH (yHy)-lyHZ1 2 Y Hr(yHY>-1YHE {ZZH} y(yHy)-le,

Since W - CWp(k, I), then Z - CNk(O, I) by theorem 55 and theorem 53.

By theorem 52, E {ZZH} = I. Thus

eH(yHy)-,yy(yHy)-fIe, = eH(yHy)-le,

We substitute this back in to obtain

S1ey{(Wpp)2leHi(y=y{1yplZI2 p1
y H 9J(1 HV11 U,. 11

[k-p][k-p- e [k-p+l-[k-pj[k-pl]

Adding our results, we get

( ________ 1
{w(kwj} - P+ I(k41) + [k-p+ 1][k- p][k-p-1]

Now, calculate £{ W- 1 AW- 1 }. Consider

{(W") 2}2. = WeIW-eiWeW } = (k-p)(k-p- 1)

when k > p + 1. If A = eieff, then

(Ic I p) (C' eH [dicieitt + d 2 tr(C•iCi)I] ei = di + d 2  (F.5)

Also,

£ {WiiwJJ} = S {Eittw-ctic I•W-lej}
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Now let A = eie7. Then we find

. {WiWjj} = efH [deieje + d2 tr(eiey)I] ej =

From equation F.4, d, = Substitute into equation F.5 to get(k-p+1)(k-p-1)"

1 1d2 =1
[k - p][k - p - 1] [k - p + 1] [k - p -

k -- p k-p+1 (k-p-1 -I [k-p +11 [k-p][k-p-i]

Therefore, W- 1  CIWp(k, Ip) and k > p+ 1,

E{W 1 AW 1 } 1 A+ 1•¢{W-mW-1} [k -p+ 1)][k -p-1]a- [k -p+ 11][k -p] [k -p- 1]tr]

0

Theorem 96 Let W- 1 -. CIWp(k, E) and A E CPXP. Then for k > p + 1 we

have

E-WAA- 1  + [tr(a-1)]Z- 1
(k-p+1)(k-p-1) (k-p+1)(k-p)(k-p-1)

This is Tague's complexification [264] of Styan's corollary 14 [262].

Proof. We start with the result for V-' - CIWp(k, Ip) where

C{V-'BV-1} = dB+dltr(B)

Let E = GGH. Then W - CWp(k, E) implies V = G-'WG-H - CWp(k,I)

by theorem 54. Thus

S{GHW-1GBGHW-'G} = diB + d21 tr(B)
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Multiply this by G-H and postmultiply by G- 1. We get

G-HGH { W-'GBGHW-1 } GG-' = dG-H BG-' + d2G-H IG-' tr(B)

which we rewrite as

F {W-IGBGHW-'} = dG-HBG-1 + d2E-1 tr(B)

Let A = GBGH, which implies B = G-lAG-H. Then

C{W- 1 AW- 1 } = dlE-lAA-' + d2E-I tr(G-lAG-H)

= dE-21 AE- 1 + d2E-I1 tr(E-1 A)

since tr(ABC) = tr(CAB). Recall that

1

d= [k-p+l] [k-p-1]

and

1d2 --
[k - p + 11 [k - p] [k - p-

0

Corollary 27 Let W - CWp(k, E) and k > p + 1. then

(r-,)2 +-' tr (E-')
.[k - p + 11 [k - p - 1] + [k - p + 11 [k - p] [k - p -1

This is Styan's corollary 16 [262] which was complexified by Tague [264].
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Proof. Let A = I in theorem 96.

Corollary 28 Let W -. CWp(k, E), a E CP and k > p + 1. Then

•-laaHY2-l aH•-la•-I
var(W-la) = E-a E1+ al,'F

[k-p+11 [k-p]2 [k-p-] [k-p+1 1[k-p [k-p- 1]

This was done originally by Tague [264], motivated by the work of Styan [262].

Tague also produced results for the real variables case.

Proof. Define

var(W-') = E I{W-'aaHW-1} - £{W-la}g{aHW-1}

In theorem 96, let A = aaH. Then

EIlaaH aI aH1-lalE -
kW-,aaHW-= + 11 [k+- p- 1] [k-p+ l][k-pl[k-p-

where

tr(aaHE-1) = tr(aHr?-la) = aHE-la

which is a scalar. The numerator of the last term could also be E-'aE-'aH.

{W-'a}2 = E{W-la}E{aHW-} = [S{Wl-r1}a] [aHE{1}]

By theorem 87 then

[E {W}-' a] [aHC {W[k}] - -p]

Note that

1 1
[k- p+ 11[k- p- 11 [k- p]2
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k2 - 2kp + p 2 - [k 2 - kp- k - kp+p 2 +p+ k - p- 1]

(k-p+ 1)(k-p)2(k-p- 1)

k 2 - 2kp+p 2 - k 2 + 2kp-p 2 + _ 1
(k- p+l1)(k -p)2(k- p -1) (k- pT+1)(k -p)'(k -p -1

The result follows from these pieces substituted back into var(W-'a). 0:

Corollary 29 Let W -, CWp(k, E) and k > p + 1. Then

tr [(E-,)2] 
[tr ( -1)]2

1,trkW=[k-p+1] [k-p-1] +[k-p+1] [k-p] [k-p-i]

This is a variation by Tague [264] on Styan's corollary 16 [262].

Proof. £ {tr [(W-1) 2]} = tr [E {W-IW-I}]. The result follows immedi-

ately from corollary 27. 0

Corollary 30 Let W ,- CWp(k, I) and k > p + 1. Then

{ltr (W_,)]2 = p[p(k- p)+ 1]
[k - p + 11 [k - p] [k - p -

This is a variation by Tague [264] on Styan's corollary 16 [262].

Proof.

-F{ [tr (WI)]2} =£ {[tr (w-')] [tr (W-')]}

, 6 { [ eiHw-lei]-[- eyw-lej] }-= E -eif {w-1eieHw-1} ej

Note that

eYE£ {W-ieieyW-'}ej E I (Wi)2} i= j

.{WiW'-} i - j
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E {(Wii) 2} occurs p times, and E {W" Wjj} occurs p(p - 1) times. Using

equations F.3 and F.4, we get

Sf [tr (W_,)]21 p p(p- 1)
[k-p][k-p-1] ' [k-p+1] [k-p-1]

p(k-p+ l)+p(p- 1)(k-p)
(k - p + 1)(k - p)(k - p- 1)

The numerator is simplified as follows.

pk - p2 2+ p + p(pk - p2 - k + p) = pk -p 2 +p+ p 2k - p 3 - pk + p2

= p + p 2k - p3 =p+p2 (k - p) = p[l + p(k - p)]

The result follows from this. 01

Corollary 31 Let W - CWp(k, I) and k > p + 1. Then

var trW- )]=kp
rt )J [k-p+ 1][k-p]'[k-p- 1]

This is Styan's corollary 17 [262] which was complexified by Tague [264].

Proof.

var [tr (W-')] = { [tr (W_1)]2} - [F {tr (W,)}1]2

By theorem 88, F {tr (W-1 )} = k-p" Using corollary 30, we get

r W1  p[p(k - p) + 11 p2

vartr(W) = -p+1)(k--p)(kI--p-1) (k -p)2

Looking at the numerator of the difference, we get

p[l +p(k-p)](k-p) -p 2(k-p+ 1)(k -p- 1)
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=p(1 +pk - p2 )(k- p) - p 2(k- p + 1)(k- p- 1)

=p(k+pk2 -p 2 k-p-p 2 k+p 3)-p 2(k 2 -pk- k-pk +p 2 +p+ k-p- 1)

= pk + p2 k 2 - p 3 k - p 2 - p3 k + p 4 _ p 2k2 + 2p3 k - p4 + p2 = pk

Placing this over the common denominator (k-p+ 1)(k-p)2(k-p- 1) yields

the result. 0

F.5 Tague Example: Signal-to-Noise Ratio

Let x(t) E CP be a random output of a sensor array at time t, which is

the sum of signal s(t) passed through a narrowband beamformer and random

noise n(t). Explicitly, x(t) = ds(t) + n(t). The complex vector d E CP of unit

length is the narrowband steering vector. The random noise n(t) is assumed

to have distribution CNp(O, RN). The random signal s(t) is assumed to have

distribution CN1 (0, 2r).

Consider a beamformer whose output y(t) is given by y(t) = wHx(t) where

w = iRN'd, and

k1 nmnRN = - _k mr
m=l

We assume that each noise measurement is mutually independent of the signal

and other noise measurements. The solution for tv is the optimum Wiener

solution and w = RjI d is the Wiener-Hopf equation. This is a common

example, and it is discussed by Monzingo and Miller, Chapter 3 1185J.
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The problem we want to solve is to find the signal-to-noise ratio of the

beamformer output. We begin by noting

y(t) =w'x(t) = (.k N d)Hx(t) = (ifrN d)H [ds(t) + n(t)] (F.6)

The expected value of the power at the beamformer output is

E Il{(t)II2} = £{•Y(t)y(t)} (F.7)

= ( {[(frlcd)H [ds(t) + n(t)]]H [(kiNld)H [ds(t) + n(t)]]}

"- {[[dHs*(t) + nH(t)] (iNld)] [(k Nld)H [ds(t) + n(t)]]}

= E {d HS(t)kNiddHRN Hds(t) + nH(t)k•/ddHRk Nds(t) (F.8)

+dHs*(t)RkT'ddhRNHn(t) + nH(t)ftkNddH fNH n(t)}

Now we invoke the assumption that s(t) and n(t) are statistically independent.

Then £ {lly(t)II•}

E £ {.s(t)s(t)} dH£ {jfNddH N H} d + E {nH(t)iRNlddH'ff d} N {s(t)}

(F.9)

+E {s'(t) I dHE {R1'ddH RNHn(t) } + E {nH(t)N lddH NHn(t)}

Observing that £ {s(t)} = 0 and likewise £ {s*(t)} = 0, we simplify this to

£ {Ity,)I} = £ {Ijs(t)1} j .d {RkNddHR-} d + £ {•EnH(,)f'dd•H-n(t)}

(F.10)

Recall that s(t) has zero mean, and thus £ {s*(t)s(t)} = a2. Also note that

nH(t)frN1d and dHfNIn(t) are scalars and therefore commute. The quantity
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A/Nd is a column vector, so AN'ddHANH _ IIRN'dl 2 is a matrix norm. Using

the observations, we get

'o {Ily(t)I112} = a 2d He { jjR?'djj 2} ldEd + j N { H n(t)n H(t )ANd} (F. 11)

= Oc~dHe f{I-dR I2 I d + dH£F H ~/n(t) 12 } d
We note that kRN -' CWp(k, RN). We apply theorem 96 using A =ddH.

Thus

£ -Jldd HltH} f {l-lddHA-1}

since AN - AH, and so we get

6 h-1 dd}H 1l RN/ddH RNl + [tr(ddHRvl ) ]RN'
2 k•lddf =kp l][k-p- 1J k +p+lj[(k-pJ]kI-p-l

(F.12)

This implies

E f AN'dd H j?}N [k-p+ 1]RNlddH RNI (F.13){ }h~vddH•N' =[k - p + I] [k - p -

k2

+[k - p + 1][k - p][k - p- 1][tr(ddH RT)]R-2l

To perform the next step, note that tr(ddHRI?1) z- dHR~/d is a scalar.

This allows us to say

dH tr(ddH RN7)R~'d = tr(dd HRN I )dHRNId = (dHRNld)2  (F.14)

Then

dHe f{ANI dd H jN 1d (F. 15)
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[ (d1H RRNld) + [k p+l][k p][k 1](dH RN d)2[k - p + 1][k - p -..-. . .I[ -p k

Since RN' is Hermitian we know dHRNId is real which implies (dHRN'd)2 =

dHRNr'dj2 . Note that

1 1
+[k- p+ 11[k-p- 11 [k- p+ 1][k-p][k-p- 1]

k-p~l 1

[k - p + 11[k - p][k - p- 1] [k - p][k -p- 1]

Then

a'd He 111h1]d1121 d = 2 fdHRld\2  (F.16)
S N I2J 3 UINJ[k - p][k -p -l

We evaluate the second remaining term of £ {Ily(t)II2} in stages. This is

the noise component.

dHE f{jN Hn(t)nH(t)fRNl} d = dHE {RNH [E {n(t)nH(t)}] fRN1} d

where we note Rh! is Hermitian and n(t) is independent of the noise samples

used to construct RN. Thus we get

d He {Rf N H"n(t)n H(t) hN} Id = d" E {I hNRNfN1R I d}

With k > p + 1, we now apply theorem 96.

E{ iRHIRNR }-- [k-p+ lRtk-p-l]R'RNRN' (F.17)

+ [k - p + 1][k- p][k - p- 1 tr(RNR )] R
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Rk1±k 2p

=[k - p +t 1][k - p - 1]RN1 [k - p + 11[k - p][k - p - 1]R N

where tr (RNRNtl) =tr(I) = p

_kI(k - p +t p) R- PR-
=[k - p +1[k - p[k - p- 1]NI= [- p+l1][k - p[k - p -lN

Therefore

dHg{RjRNR[}d = p+ 1][k- dRd (F.18)

We now compute the signal-to-noise ratio.

6 1 IWHds(t)I12 1 o2dHC {f11d 1 2} d
-' = SNRN 2 (.9

e{I IWHn(t) 12 } N dHE {A N1 RN iN' Id(F19

k2 _r2,.d R-l d)2
[k-p][k-p-__(dH R11  d)N

k-p+ a H(dgR-d)

k
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Appendix G

ZONAL POLYNOMIAL COMMENTARY

G.1 History of Development

Zonal polynomials are special functions, just as Bessel, Legendre, Tschebyshev,

Hankel, and trigonometric functions are special functions. Zonal polynomials

are important to this work because they are used to evaluate a factor term in

the probability density function of the sample eigenvalues of a Wishart matrix.

At first blush, zonal polynomials appear to the casual reader of this thesis

to have very little to do with the content of this thesis. However, the fun-

damental contribution to advancing the order determination problem hinges

on the existence and properties of zonal polynomials. The properties of these

functions are still objects of current research. Muirhead [188] reports that

zonal polynomials have (as of the time articles were written for the Encyclo-

pedia of Statistical Sciences published in 1988) been defined only for symmetric

matrices. He gives a suggestion of how to extend the definition to Hermitian

matrices. Future progress in the small sample order determination problem

must build upon these concepts.

The application of zonal polynomials to the related problem of finding the

probability density function of sample eigenvalues was first made by A. T.

James equation (94) [1201 in 1964. James derived his result for the case of a
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real Wishart matrix, and stated the result for the symmetric complex Wishart

matrix by observing similarity of forms of other results. In 1987, Gross and

Richards [961 derived zonal polynomials for the real, complex Hermitian, and

quaternion cases simultaneously by studying invariants in a group representa-

tion setting.

Classical work in acoustic signal processing has been done using forms

resulting in Hermitian Wishart matrices, which I have merely called Complex

Wishart matrices. Indeed, much of my development could be recast in terms of

Complex Symmetric Wishart matrices with accompanying background theory,

but at the expense of losing use of properties of an inner product space and

thus also access to the use of the concept of an adjoint. The very important

contribution by Gross and Richards [96] justified the application of the form

of the results for the joint density of sample eigenvalues previously written

down by inspection by A. T. James [120]. The meaning of the detail of James'

results is different.

Gross and Richards [96] point out that zonal polynomials are spherical

functions for the Gelfand pair (G, K). In a general setting, spherical functions

are studied by Helgason, Chapter IV [105]. Readers of Helgason or Gross and

Richards will profit by first preparing a background in Lie theory.

Muirhead [187] develops zonal polynomials for the real variables case in a

manner easily followed by engineers. Because the Laplacian operator is un-
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conditionally applied in his development, the approach does not work for the

complex variable case without further restrictions. Once the general devel-

opment by Gross and Richards [96] is accepted which bypasses the problem

of unconditionally applying the Laplacian, then Muirhead's results apply ei-

ther directly or with consideration for differences in the real dimension and

structure of the real and complex variables cases. Takemura [265] provided a

7 page development of complex zonal polynomials that relied heavily on an

earlier development of real zonal polynomials in that monograph.

G.2 Gross and Richards' Development

This section is a review of the development of zonal polynomials done by Gross

and Richards [961. Although much of this discussion is directly from their

paper, I have generally omitted proofs and ventured comments that would

allow an engineer to more easily follow their paper, provided they have read

the various surveys of algebra and analysis contained in this thesis. Part of

the contribution here is in helping identify which spaces are objects of study

at any particular point. I also attempt to highlight what is important, and to

provide concrete examples at various points.

Gross and Richards' work is very important. In one treatment, they de-

velop zonal polynomials of matrix argument for real, complex Hermitian, and

quaternion fields. Terminology used by them comes out of the study of Lie
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groups and group representation theory. The mathematical dictionary of most

frequent value in reading this paper is the one edited by 1t6 [115], published by

MIT Press in four volumes, beginning in 1987. A new mathematical dictionary

that has volumes through "Sp" published (1992) that is excellent is a transla-

tion of Vinogradov's Soviet Mathematical Encyclopaedia, edited by Hazewinkel

[104]. Smaller dictionaries have proven to not be useful for reading Gross and

Richards' work. We are still in need of a dictionary to translate the technical

language of algebraists into the language that engineers understand, and vice

versa.

We are interested in group representation theory because it allows us to

connect a practical result we need with an intuitive abstraction about the na-

ture of the problem we are dealing with. This approach allows us to understand

properties of our problem that otheriv ,se may escape notice.

We need to evaluate etr(-E-1 A) in the development of the joint density

of the eigenvalues of A. We have gotten to another form whose evaluation will

get us closer to the answer we need. It is

/uTp etr(- E-'Uff AU)(dU) (G. 1)

Our journey will lead us to express the exponential in terms of zonal polyno-

mials. When this is done, we can take advantage of a splitting, or decomposi-

tion, property that separates into the product of a function of (-E-') times

the same function of A.
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In examining our trace function, we observe that its value depends only on

the sum of the eigenvalues of the argument of the trace function. If we looked

at the set of all polynomial functions of the argument and attempt to select

an expression for the trace function, we find that we are dealing with concepts

of invariant spaces. This is our clue to consider the wonderful world of group

representation theory. This leads to the development of zonal polynomials

which form the basis for the space of polynomials we are interested in.

Gross and Richards [96] begin their development of zonal polynomials by

considering the structure of the algebra of polynomials defined on the General

Linear Group G = GL(n, F) consisting of all nonsingular n x n matrices whose

elements are taken from the field F. This field F may be real (R), Complex

(C), or Quaternion (H). This set of polynomials is identified by the symbol

P(G). Pay close attention to the various modifications to this notation to

indicate different sets. Group representation theory first comes into play by

the definition of the function R, that takes its argument from group G, and

acts as a transformation on the linear space P(G). R is defined by the action

R(a)W(x) = o(xa) (G.2)

where V E P(G) and a, x E G. R is called the right regular representation of

group G on the linear space P(G). Note that

R(b)[R(a)W(x)] = R(b)ý(xa) = p(xab) = R(ab)ýp(x) (G.3)

Thus R(ab) = R(b)R(a). Since a function obeying f(xy) = f(x)f(y) is
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called a "homomorphism", we will call a function with the opposite order

f (xy) = f(y)f(x) a "heteromorphism" (a term first used by Tom Concannon,

1989). We note that Vilenkin [271] defines a group representation as being a

homomorphism, but careful following of his nonabelian examples show them

to be heteromorphisms. The structure of group representation theory can be

recast as heteromorphisms without damage to its beauty.

Gross and Richards partition P(G) into sets of polynomials Pd(G) defined

on G that are homogeneous of degree d. Thus

00

P(G) = (Pd(G) (G.4)
d=O

They define a scalar product on P(G) defined in terms of a differential opera-

tor. Using this, they show that the subspaces {Pd(G)} are mutually orthogonal

and together span P(G). They avoid nagging issues of differentiability in the

field of definition of the argument by instead considering the fields in their iso-

morphic real fields. They do not therefore require their polynomial functions

to be holomorphic. They selected the inner product

< 0,,p >= n(O)ýp(x) 1.=o (G.5)

because it has the property of forming a weighted sum of products of coeffi-

cients having the same product of indeterminates, raised to identical powers.

Zonal polynomials are defined as homogeneous harmonic polynomials on

the surface of a sphere. Assumption of differentiability is routine and is not
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an issue of central concern for real variables. It is a main concern for us. We

note that polynomials in z are differentiable with respect to z. Problems arise

with polynomials that include terms such as z*.

Suppose, instead, that we treat polynomials as N-tuples in the way defined

by Broida and Williamson (p. 253) [47]. Then a polynomial is represented as

a vector of infinite length with N entries being non-zero. One may then define

an inner product on the vector of the coefficients of a polynomial.

Define a compound index a the same way Gross and Richards did.

a def (a 1,a 2,... aN) (G.6)

We let a term of a polynomial of N variables a,,Xo' be given by

a lN,2. XN (G.7)

We can establish a collating sequence for (a,, a2,..- aN) to linearize our multi-

dimensional array of coefficients {a,}. For some fixed d, we can use a counting

sequence to establish an ordering for all a such that

al def al+a 2 +"" +aN=d (G.8)

where ak > 0 is an integer. For example, let b = d + 1 be the base of a number

N
system. Then an ordering of IaI = d can be given by the number EI akbk-.

k=1

For fixed N and fixed d, there are (N~itd) elements.

Define

a! def (al!)(a 2!) ... (aN!) (G.9)
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We may define the scalar product of two polynomials b = b,,Xc' and Va =

ZaaXc' by

< ,p,•p >= •2a! b*a,, (G.1O)

I have switched the standard mathematician's order of arguments in the inner

product to make use of the notation common to engineers with vectors where

< x, y >-= xHy. Note that as long as N < oo, I could just as easily define the

inner product by

a

since the finiteness guarantees convergence. I chose to retain the a! to maintain

the same notation used by Gross and Richards. Note that I explicitly have

not used an operator that is necessarily a differential operator. This scalar

product obeys the properties of an inner product. Let

hIl 11< V >t (G. 12)

be the inner product space norm of Cp. Define the distance between ik and p

by

d(O, w= I)- ýpl(G. 13)

We now have a metric space.

The purpose of the inner product defined by Gross and Richards was to

define orthogonality. The inner product defined above provides the same or-

thogonality results. They use the inner product to demonstrate the property
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that {Pd(G)} is a set of mutually orthogonal spaces of homogeneous polyno-

mials that together span P(G). The Broida and Williamson construct permits

the desired observation without grappling with differentiability. Numerically,

there is no difference between the inner product definitions. Weighting schemes

not using the a! term in the sum can also produce the required properties. The

requirement is to obtain a convergent series, particularly when N becomes un-

bounded, and to maintain satisfaction of the properties of an inner product.

This means that differentiability, and thus harmonicity, are not required prop-

erties of the polynomials developed by Gross and Richards. Recall that zonal

polynomials are characterized by the statement that they are homogeneous

harmonic polynomials defined on the surface of an n-dimensional sphere. Ho-

mogeneous polynomials defined on the surface of an n-dimensional sphere that

are harmonic are special cases of the set of polynomials developed by Gross

and Richards. The property of harmonicity is an additional benefit when you

select a! as the weighting term because this permits interpretation of the inner

product as a differential operator as done by Gross and Richards. Their prop-

erties for representations R and r continue to hold when weights are selected

to produce a finite-valued inner product.

Let K be a maximal compact subgroup of G. When F = C, then K =

U(n) is the set of unitary n x n matrices

K = {k: kkH = I,, k E G) (G.14)
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Gross and Richards use the algebraist's convention of using 1 rather than I to

denote the identity element under multiplication. They show that the right

regular representation R of group G acting on the linear space of polynomials

P(G) is unitary when the argument of R is restricted to elements of k E K C

G. Thus

< R(k)O, R(k)w >=< 0, ýp > (G. 15)

Gross and Richards construct their practical result, which is a set of poly-

nomials which they know how to compute. Let

vcu = x (G.16)

be the LDU decomposition of x when x is represented by a square n x n matrix,

See Stewart (p.132) [259] for a discussion of the LDU decomposition. The set

of lower triangular matrices with ones on the main diagonal is V. We note that

v E V. The set of upper triangular matrices with ones on the main diagonal is

U. We note that u E U. Let (fl, @, 0) be a ring with identity elements e@ and

e®. Let w E fl. Then element w of the ring is called nilpotent of order k if k

is the smallest positive integer such that

wk =w O 0 w ... ® W= e•

k times

is the additive identity element of the ring. If you removed the ones from the

main diagonals of v and u, then the new elements constructed from v and u

would be nilpotent. The product of any n such nilpotent elements constructed
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from elements of V, which we call (V - I), or the product of any n such

nilpotent elements constructed from elements of U, which we call (U - I), is

the zero matrix. A linear transformation is called unipotent if it has the form

I + A where A is nilpotent [116]. Thus, V and U are unipotent. The set of

n x n nonsingular diagonal matrices is C. Let c E C. The triple (U, C, V) is

called the standard bitriangular structure for G.

Let

m = (mi,m,. .. m2 ) (G.17)

such that

Mn _ M2 M. ..- m> 0 (G.18)

The set of polynomials P 2m(G) is defined as a set of all polynomials having

the property

ýP(vcx) = 2.m(C)V(X) (G.19)

where

2 m (C)= cI I'm" Ijc2 
2M2 ... jCj 2  (G.20)

This function, i 2m(c), is called the characterof C. The set P2m(G) is invariant

under right translation by G. Let ir2m be R when R is restricted to being

applied only to V E p2m. Then

7r2.(a)'p(x) = p(xa) (G.21)
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describes the action of the right regular representation of G on the linear space

P 2m(G).

Consider the structural relationship between the leading principal sub-

matrices of an LDU decomposition and the corresponding leading principal

submatrix of the original matrix x. Looking at an example will provide a

foundation for understanding some definitions and properties to follow.

1 0 0 0 cl

V21  1 0 i0 C2

31 V32 0C3

V4 1  V4 2  V4 3 1 C4

(G.22)

U 1 2  U 13  U 1 4

0 1 U23 U24

x

0 0 U3 4

0 0 0 1
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Cl C0t12 CIU13

v21Cl V2 1 C1 U 1 2 + C2  V 2 1 C1 U 1 3 + C2 U 2 3

V31Cl V 3 1 C1 U 1 2 + V3 2 C2  V3 1 CIU 13 + V3 2 C2 U 2 3 + C3

V41C1 V 4 1 CIU 1 2 + V 4 2 C2  V4 1 CIU 1 3 + V4 2C2U 2 3 + V 4 3 C3

(G.23)

CIU 1 4

V2 1 C1 U1 4 + C2 U 2 4

V 3 1 C1 UI 4 + V3 2 C2 U 2 4 + C3 U 3 4

V4 1C1U14 + V4 2C2 U24 + V43 C3U3 4 + C4

What you need to notice here is the partitioning of the matrix into succeed-

ingly smaller matrices anchored in the upper left corner. These matrices are

called leading principal submatrices. Let Ak denote the kth leading principal

submatrix of square matrix A. Then for the LDU decomposition of x given

by vcu = x, we observe that it is also true that vkckuk = Xk. Define

Ak(x) = (detzxk)" (G.24)
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where 7 = 1 if F = R or F = C, and for F = H. With this notation,

let
n--1

S2.m(X) = IA(x)12mn j-[ IAI(X)I2(m ,+1) > 0 (G.25)
j=l

Note that O2,n E P2m(G).

'P2m and 7r2, turn out to have special properties. ,r2m is an irreducible

representation of G on P 2m(G). 7r2, is the subrepfesentation of R on the

subspace P 2m(G). The function (P2, has a group theoretic definition as the

highest weight vector of 7r2m. V2m is the element of P 2m(G), unique up to

scalar multiples, for which

7r2m(Cu) (P2 . (X) = P 2 m(C) V 2m(X) (G.26)

for all (c, u) E C x U. From this we know that P 2m(G) is the span of right

translates of SO2m under group G. This form looks like the familiar equation

Ax = Ax that defines the eigenvalues and eigenvectors of A.

We observe that p 2m(G) C Pd(G) where d = 2 Iml.

Gross and Richards also engage in intuitive abstraction. Recall that in our

motivating problem we are dealing with the trace function. The trace function

has the property that it yields the sum of eigenvalues of the matrix argument.

Further, we are concerned with the trace of the product of Hermitian matrices.

Let A and B be Hermitian positive definite. Matrix A may then be factored

as A = CCH. By a property of the trace function,

tr(BA) = tr(BCCH) = tr(CHBC)
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Matrix D = CHBC is also Hermitian. Thus, we are interested in properties

of tr(s) where s E S and S is the set of Hermitian matrices. We know that

somehow we need to work with invariant subspaces.

Let

I(G) = {p(kx) = p(x)} = P(G)K (G.27)

be the set of all polynomials on G that are left-invariant under translation by

an element of K. Let I(G)d C I(G) be the set of nonzero left K-invariant

polynomials that are homogeneous of degree d. Note that -I E K since

(-I)(-I)H = I. Thus p(-x) = p(x), which implies that only polynomials

homogeneous of even degree are nonzero in I(G). Therefore

I(G) = • I(G)2d (G.28)
d

Let V E P(G). Define the spherical transformation E: V ---+ V# by

W= IV(kx)dk (G.29)

for all x E G. This is the orthogonal projection of P(G) onto I(G). The key

observation by Gross and Richards that links the practical with the abstract

is their Theorem 3.4 (presented next), which relies on Schur's lemma. It is

the ordering of the {mi} in this theorem that establishes the ordering of the

eigenvalues in the density function used for theorem 70.

Theorem 97 Let d > 0 and m = (ml,...,mr,) with mi . m,, > 0 and

Iml = d. Then
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1. The restriction E2m of E to PIm(G) is an isomorphism of P 2m(G) onto

a subspace 12m(G) of I(G), and

2.

I(G)2d= $ J2 m(G) (G.30)
Imi=d

is the decomposition of I(G)2d into irreducible subspaces.

Each space

12 mr(G) = =(P2 m(G)) (G.31)

is an irreducible right invariant subspace of I(G). The dimension of I(G)2d is

N 1+d = ) deg r2m (G.32)

N- 1 Im =d

Let p be the subrepresentation of R on the subspace I(G) of P(G). Then

p2 .(a)p #(x) = E-2 m X2.m(a)= -- E p*#(x) (G.33)

P2m is the irreducible representation of signature 2m that acts by right trans-

lation on the space I2m(G). Note that this looks like a basis change.

The most important fact Gross and Richards highlight is the relationship

between I 2 m(G) and P 2m(G). Because we know how to compute O E P 2m(G),

we can find the corresponding V# E J 2 m(G).

Let P(S) be the algebra of all polynomials on the set of Hermitian matrices

S = {x = xH}. Let Pd(S) be the subspace of P(S) of polynomials homoge

neous of degree d. Let P(S) use the same inner product used on P(G).
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Gross and Richards define a different representation on S, selected to pre-

serve the structure of the argument of q E P(S). Let

r(a)q(s) = q(aHsa) (G.34)

for a E G, s E S. Note that equation G.34 is slightly different in form than

the one presented by Gross and Richards in their equation 4.2(2). When the

argument of T is restricted to K then r is unitary. This means

< r(k)ql(s),r(k)q2(s) > = < q(s),q2(s) > (G.35)

Define a mapping Ql: I(G) -+ P(S) by

p(x) = q(xHx) (G.36)

for p E I(G) and q E P(S). Note that

D p(a)p(x) = r(a)f 0p(x) = q(aHxHxa) (G.37)

for all a E G. We also can see Q : I(G)2d --+ Pd(S). Q is an isomorphism. If

we call the restriction of fl to 12m(G) by the notation 0 2 m, then

P"(S) = Q12 m(1 2,(G)) (G.38)

and

T2m(a) q(s) = Q2m p2m(a) Q-' q(s) (G.39)

T2m is the irreducible representation of G with signature 2m acting in subspace

Pm(S) of Pd(S), and we get

Pd(S) = ( Ptm(S) (G.40)
Iml=d
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and

-r= ED7.(G.41)lml=d

If we let
n-1

qm(s) = A(s)'n" ' Aj(fs) m '-m '+' = ,2m(X) (G.42)
j=1

where s = xHx, Iml = d, then qm is homogeneous of degree d and

r(cu) qm = p 2 .,(c) qm

Note that qn E Pt (S). It is the highest weight vector of r 2m.

Since we have an isomorphism between Pm(S) and 12 m(G), we know there

exists some K-invariant polynomial in Ptm(S). Let

fm(s) = L qm(kHsk)dk (G.43)

This is similar to the spherical transformation we did earlier. This fm is unique

up to constant multiples in P m(S). Note that

fm(kHsk) = fmn(s) (G.44)

for all s E S and k E K. Gross and Richards point out that since any Hermitian

matrix s can be diagonalized by some element k E K, then fm is uniquely

determined by its restriction to diagonal matrices in S, which all have real

entries. As a polynomial in the n diagonal entries which is homogeneous of

degree d, fm is invariant under the action of the symmetric group on n letters.

The dimension of the space of such polynomials is the number of partitions
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m of the positive integer d. There can be only one linearly independent K-

invariant member of Pm(S).

Definition 8 A non-zero K-invariant polynomial fm in Ptm(S) is called a

zonal polynomial of S of weight m.

These zonal polynomials of different signatures rn form a basis {fm} for

the set of K-invariant polynomials on S, P(S)'. Thus

P(S)K =- (@cf,. (G.45)

Gross and Richards use the convention by workers in analysis that constants

are subsumed into a general constant at each step of a derivation without

indexing or other distinguishment. Gross and Richards point out that zonal

polynomials corresponding to different signatures are orthogonal. They are in

different subspaces.

Recall that I used a definition for inner product different than Gross and

Richards. They used the properties of inner products to demonstrate some

important properties of zonal polynomials in their Lemma 5.2. For this reason,

a proof of Lemma 5.2 is given with the new inner product. Their Lemma 5.2

remains valid.

Theorem 98 For any d > 0,

(tr s)d = .&,f,(S)
ImI-d
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where

am = (d!) hfm1I-2 > 0

for all m. This is a modified Gross and Richards Lemma 5.2.

Proof. (tr s)d is homogeneous of degree d, so it is a linear combination of

all fin(s) for Iml- = d, and thus

(trs)d = • a mfm (s) (G.46)
Iml=d

for some suitable choices of am.

By definition of the exponential function, we know

exp[trs] = 0 j(trs)d - • a=f,(s) (G.47)

d=O " d ! Inl=d

Consider the inner product < fm (s), etrs > .

<fm(s),exp[trsl >= fm(S), E - E a, fn(S) (G.48)
d--O lnl=d

00 1 1

E - E Zan <fm, fn >='jan~m
d=o Inl=d

where d = Iml.

Suppose we normalize the coefficients of polynomial fm so that

1 a. Ifm112 = 1 (G.49)

If we do this, then

am = d! 1fm I1-2 > 0 (G.50)

We know a, > 0 because jjfm II > 0 unless fm = 0 for all s, and d! 7 0.0
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Definition 9 We define Zm to be a zonal polynomial with a different normal-

ization, so that Zm,, = afm where am = d! Ilfm-7 2.

This means

(trs)d= ' Zm(s) (G.51)
Iml=d

and also

Zm(kHsk) = Zm(S) (C.52)

which means that Zm is a function only of the eigenvalues of s.

The last result needed from Gross and Richards' paper is their Proposition

5.5.

Proposition 41 For any s, t E S,

I, Zm(sk-tk)dk = Zm(s)Zm(t)

Z, (I.)

where dk is the normalized Haar measure on K.

The integral is known as the "splitting property" for zonal polynomials. In

K we know since kHk = I that k` = kH. The integral can be written as

IK Zm( k-ltk) dk (G.53)

The proof is done by showing

L p(ykxH) A = AX) p(y) (G.54), p(I)
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where p = Z(xHx). Note in following Gross and Richards' proof that all func-

tions in I(G)2m are also left K-invariant as well as right K-invariant. Thus, as

a function of x, then fK p(ykxH) dk is a left K-invariant element of I(G)2m.

This splitting property, for the case of complex variables, fills in the steps

that justify James equation (92) [120], and is the complex analog of his equa-

tion (23). The Zm of Gross and Richards is the Cm of James.
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Appendix H

SOME GROUP THEORY

The purpose of this appendix is to provide a minimal background for concepts

from group theory, group representation theory, and topological group theory

necessary to follow the material used in development of zonal polynomials.

This body of theory is not in the usual preparation of acousticians, engineers,

or statisticians, yet the future of acoustic signal processing is grounded in

these concepts. The material presented here is barely enough to provide some

basic definitions. Fluent use of these concepts requires a 2-3 course graduate

sequence. With judicious topic selection, an applied graduate course could

be constructed for engineers that could be learned in one semester. We con-

clude with an example which establishes some group invariance properties of

the vector complex normal distribution which justifies our use of the zonal

polynomial approach.

H.1 Basic Group Theory

Definition 10 A group G is a set 0, together with an operator 0, that obeys

the rules below.

1. 0 is a binary operator such that if a E G and b E G, then a0b E G.
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2. 0 is an associative operator. If a, b, c E G, then

(aOb)Oc = aO(bOc)

Thus, it makes sense to write a~bOc.

3. There is an element ea E G such that for all a E G we have

aOeo = eoOa = a

It is a theorem of group theory that there is only one such element in G.

We call this element the identity element of (G, 0).

4. For each element a E G, there is an element b E G such that

aOb = bOa = ea

It is a theorem of group theory that for any element a E G, there is only

one element b E G for which this is true. We call b the inverse of a, and

we write b = a-1.0

To remind us of this association, we can denote it by (G, 0)g. The subscript

g identifies (G, 0) as a group. When the context is unambiguously referring

to the group, the notation may be simplified to (G, 0), or simply G. The

symbol 0 was chosen to decouple our normal concepts of operators so that we

can more easily think of general operators. The concepts of a group extend

well beyond our usual addition of real numbers, or multiplication on the set
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of real numbers when the zero element is removed. You may choose any other

symbol, and the rules still apply. Another definition is important to this thesis

is that of a subgroup.

Definition 11 Let (G,D) be a group. Then (H,O) is a subgroup of (G,D) if

H C G and if (H, 0) is a group.

H.2 Group Representation Theory

H.2.1 Group Representation Definition

Definition 12 A representation of group (G, o) is some other group (B, 0)

related to (G, o) by some homomorphism ýp. Thus, cp(g) is a representation of

gEG if

V(g o h) = p(g)D0o(h)

for all g, h E G, where ýp : G -* B, V(g) E B, and p(h) E B.

Let I E B be the identity element in (B, 0), and let e E G be the identity

element in (G, o). Then

p(g) = p(e o g) = p(e),o(g)

ýO(g)(P'(g) = I = ý,(e) O(g)D 1-'(g) = P(e)
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Therefore I = ýp(e) means that the identity in (G, o) maps to the identity in

(B, 0). A related result is

I = p(e) = p(g o g-') = W(g)0p(g 1 )

--l(g) = W--(g)! = --'(g)-(g)'(g- 1 ) = W(g-')

Therefore -'1 (g) E B is mapped from g- 1 E G.

H.2.2 Homomorphism Familiar Examples

A common example of a group homomorphism is

exp(x + y) = exp(x) , exp(y) (H.1)

In this example, x and y belong to the set of complex numbers which forms

a group structure using ordinary addition as the group operator. The set of

numbers {ex} are complex numbers without zero, which forms a group under

ordinary multiplication. In this example, p(x) = ex. Saracino (pp.106-108)

[231] gives other examples.

Let (A, o) be the group of invertible square matrices of complex numbers,

GL(n, C). Then det(a) defines a group homomorphism from (A, o) to the set

of complex numbers (except zero) under multiplication. Note that

det(al - a2) = det(ai) x det(a 2) (H.2)

Let (B, ED) be the group of square matrices of complex numbers with matrix

addition as the group operator. Then tr(b) defines a group homomorphism
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from (B, E) to the set of complex numbers (including zero) under addition.

Note that

tr(b, q b2) = tr(bl) + tr(b2) (H.3)

H.2.3 Homomorphism Theorems

The structure imposed by group homomorphisms permit many powerful and

useful insights. A listing of theorems (without proof) from Saracino [231] is

presented below.

Theorem 99 Let p : G -- H and 0 : H --- K be homomorphisms. Then

So: G --+ K is a homomorphism, where o is composition of functions. This

is Saracino theorem 12.1(i).

Theorem 100 Let p: G --- H be a homomorphism. Then

1. W(eG) = eH where eG and eH are the identity elements in groups G and

H.

2. For any x E G and any integer n, then W(Xn) = [W(x)]n.

3. The notation o(x) = n means the order of element x is n. This means

X" = eG. If o(x) = n, then o[p(x)] divides n.

This is Saracino theorem 12.4.



686

Theorem 101 Let W: G -+ K be a homomorphism. If H is a subgroup of G,

then W(H) is a subgroup of K.

ýo(H) = {k E K I k is p(h) for some h E H}

This is Saracino theorem 12.6(i).

Definition 13 Let H be a subgroup of G. Then H is called a normal subgroup

if ghg-1 E H for every g E G and for every h E H. We denote this by H <i G.

Definition 14 An automorphism is a homomorphism ýo : G -+ G that maps

a group back onto itself.

Theorem 102 A subgroup H of a group G is characteristic if p(H) _ H for

every automorphism W of G. Every characteristic subgroup is normal. (The

converse is false.) This is Saracino problem 12.23.

Definition 15 If H '1 G, then G/H denotes the set of right (=left) cosets of

H inG.

G/H ={Ha I a E G} (H.4)

where

Ha ={ha I h E H} (H.5)

Definition 16 If ý : -G K is a homomorphism, then the kernel of W is

ker(p) W='({eK}) = {g E G I V(g) = eK}



687

Theorem 103 For any homomorphism p : G -- K, then

ker('o) <1 G

This is Saracino theorem 13.1.

Theorem 104 (Fundamental Theorem on Group Homomorphisms). Let Vp

G --- K be a homomorphism from G onto K. Then K is isomorphic to

G/ker('o). We use the notation

K • G/ker(')= {ker('p)a Ia E G}

This is Saracino theorem 13.2.

Theorem 105 (Second Isomorphism Theorem). Let H and K be subgroups

of G, and let K -- G. Then

H/(H n K) c- HK/K

This is Saracino theorem 13.4.

Theorem 106 (Third Isomorphism Theorem). Let H <i K .< G and H -. G.

Then

(KIH) -.4(GIH)

and

(G/H)/(K/H) ý- (GIK)

This is Saracino theorem 13.5.
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H.2.4 Transformation Groups

We are now ready to discuss groups of functions that transform members of

some space. We call such groups by the name transformation groups. This

material is taken from Wijsman's monograph [288].

Wijsman (p.15) assigns a technical meaning to the word "action".

Definition 17 An action of group G on arbitrary space A to the left is any

function

?P:GxA-+4A

with the following properties:

1. For every g E G, ?,b(g, .) : A -- A is bijective.

2. ?P(e, a) = a for every a E A.

3.

(g, a)) = (g2ga)

for every g1, 92 E G and a E A.

Definition 18 If ga = a for every g E G and a E A, then the action of G is

said to be trivial.

With the previous discussion in mind, let us examine the properties of the

mapping tk(g, a) = g[a] = ga.
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1. The range of t is

R(O) = {1(g,a),a E A} = {ga,a E A} = {a,a E A} = A

Therefore, 0 is an onto (surjective) function. Suppose 0(g, a,) = 0(g, a2).

Since 0(g, a) = ga = a for all a E A, we know that

(g, a,) -= a, = a 2 = 0(g, a 2 )

for any a,, a2 E A. Therefore, 0 is one-to-one (injective). Since 0 is

one-to-one and onto, we call it bijective.

2. O(e, a) = ea = a for all a E A where e = (ImIn) is the group identity

element. We do not have to recompute for e E G since we already

established 0(g, a) = a for all g E G, which includes g = e.

3.

0(g 2 , 0(g1,a)) = 0(g 2, a) = a E A

Then

V)(gg 2 ,a) = V) (g3,a) = a

since g9g2 = g3 E G. Therefore

(92, V,(gl, a)) = (g9g 2 , a)

We thus declare that 0(g, a) = ga is an action of G on A to the left, and

this action is trivial.
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Definition 19 For a given action of G on A, the orbit of a E A is defined as

Ga def {ga: g E G}

This defines a partitioning of A. For our situation, Ga = {a}. Each partition

contains only one point, a.

Definition 20 The abstract space whose points are the G-orbits is called the

orbit space under G, and denoted A/G. In our case,

A/G = {Ga, a E A} = {a,a E A} = A

Definition 21 The orbit projection, ir A '-4 A/G, assigns each a E A its

orbit. 7r(a) = Ga = a where a E A.

Let BCAandgEG. Then

gB def {ga,a E B}

defines the g-translate of B. For our case, gB = B.

Definition 22 The saturation of B is

GB = {gB: g E G}

For our case, GB = B.

Definition 23 A set B C A such that 9B = B for all 9 E G is called invari-

ant. It coincides with its saturation.
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Definition 24 Define the isotropy subgroup (or stability subgroup) of G at a

for arbitrary a E A to be

Ga def{gEG:ga=a}

In our case, Ga = G.

Definition 25 In addition to G and A, suppose we have space C and a func-

tion W : A -4 C. For g E G, the g - translate of W, written gV, is defined

by

(gwp)(a) de~f V(g-'a)

for all a E A.

Since G is a group and g-' E G, then g-'a = a. Thus

ýp(g-a) = ýp(a) (H.6)

for all a E A. Thus gV = V for all g E G. Therefore, p is invariant under left

action of G on A, since each a E A is a different orbit.

Definition 26 If an invariant function assumes different values on distinct

orbits, it is called maximal invariant. This says for our case that if V(aj) :

So(a2) for a, :A a2, then V is a maximal invariant.

Definition 27 A function v : A -- C is called equivariant if

g(v(a)) = v(ga)



692

for all g E G and a E A. In our case, v(ga) = i,(a) for all g E G. Recall

(gv)(a) = v(g-'a) = v(a) (H.7)

Let

g(v(a)) def (gv)(a)

Therefore

g(v(a)) = v(ga)

for all g E G and a E A. Thus v is equivariant.

H.3 Topology and Basic Measure Theory

This section contains a brief highlighting of the main points of measure theory

and topology as preparation for the introduction to topological group theory.

The source for this material is Rudin [230]. Mastery of these concepts is

necessary for any new serious work in signal processing.

H.3.1 Topology

Definition 28 A topological space (G, T) is a set G upon which a collection

of subsets r of 6 is defined with the following properties.

1. r contains the empty set 4P and also G.

n

2. 7- is closed under finite intersections. For {rk}fL.I E r, then O rk E T.
k=1
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3. r is closed under arbitrary unions. For {r•} E r where the range of

index a is possibly uncountable, then U r, E r.
Cr

Definition 29 The subsets of G that are members of r are called the open

sets with respect to r. The set complement

G\X = XC= Y

of any set X E r is called a closed set.

Definition 30 Let ýp map topological space (G, r) into topological space (B, 0).

Then V is called continuous if ýo-o(X) E r for any X E u, where W-p(X) is

the preimage of X under the mapping ýp.

Definition 31 If g E G and X C G, where X is not necessarily in r, then X

is a neighborhood of g if there is a Y E r such that g E Y C X.

If (G, r) and (B, o) are topologies, then (G x B, r x a) is a topology.

However, note that it is possible to define a topology v on G x B where

v T r x c'. This means that it is possible to define a mapping that is continuous

with respect to v, but which is not continuous with respect to r x a, even

though the domain and range of W are the same in both cases.

Definition 32 Let (G, r) be a topological space. Let K C G, where K is not

necessarily in r. Let {Ba} be an arbitrary collection of subsets of G such that

K C U B,,. Then:
Oa
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1. The collection {B,} is called a cover of K.

2. If all of the B, are in r, then the collection {B,} is called an open cover

of K.

3. Let the index set # be a subset of the index set a, such that K C U B3.

Then for the general case, {Bp} is called a subcover of K with respect

to {B.

4. When each B# E r, then {Bp} is called an open subcover.

5. If the number of subsets in the collection {BO} is finite, then that collec-

tion is a finite subcover, and is a finite open subcover when each B, E r.

Definition 33 Set K is called compact if every open cover of K contains a

finite open subcover of K.

Definition 34 If B C G, then the closure f of B is the smallest closed set

with respect to r that contains B. Thus B C B C G.

Definition 35 G is called locally compact if every g E G has a neighborhood

B whose closure B is compact.

Definition 36 G is called Hausdorff if for all g, h E G, g • h, that g and h

have disjoint neighborhoods. The elements g E G, when G is Hausdorff, are

called separable.
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H.3.2 Measure Theory

Definition 37 A measurable space (G, M) is a set G and a collection of sub-

sets M of G where M is called a a-algebra, and M has the following proper-

ties.

1. Mcontains the empty set C.

2. If B E M, then the set complement G\B = Bc is also in M.

3. M is closed under countable intersections. For {Bk}kEN E M, then

fBk E M
kEN

Definition 38 Any set B E M is called a measurable set.

Definition 39 Let W map measurable space (G, M) into topological space (B, a).

Then W is called a measurable function if ýp-1 (x) E M for every x E a.

Theorem 107 Let ,i be an arbitrary family of subsets of G. With the empty

set 4D and the subset collection 77, construct a a-algebra M. M is called the

a-algebra generated by 71. Then there exists a a-algebra Mo containing 77 that

has fewer subsets of G than any other constructed M. If F is the family of

all a-algebras M which contain q1, then Mo = l ,M. (Ocneanu [196]).
MEY

Definition 40 Let (G, -) be a topological space. Using r, which can be consid-

ered an arbitrary collection of subsets of G, generate a a-algebra M. This M
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is called the Borel a-algebra, 8, with respect to r. Subsets that are contained

in 5 are called Borel sets. If ýp is a measurable function where the a-algebra

is a Borel a-algebra, then V is called a Borel measurable function.

Proposition 42 The composition of continuous functions yields a continuous

function.

Proposition 43 A continuous function of a measurable function produces a

measurable function.

Definition 41 Let (G,M) be a measurable space with a-algebra M. Let

('F,G, 0) be a field. A function It : M--.F is called a measure if:

1. Let 0 be the identity element of (1) in F. Then yt(•) = 0 where 4P is the

empty set.

2. Let { Bk}kEN be a countable collection of disjoint measurable sets, where

the index k takes on values in the set of natural numbers, N = {0, 1, 2,...

Then

-~~ ~~yB) = /~k

This property is called "countable additivity".

Definition 42 Let c be a constant in F, and let 1 be the identity element of

01 in F. Let q) and 0 be arithmctic addition and multiplication on the sets to

be discussed. When F = [0, oo] C R, then It is called a positive measure or
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(more usually) just a measure. When F = [0, 11 = R and y(G) = 1, then it

is called a probability measure. When G is a locally compact Hausdorff space

and M is a Borel a-algebra, then It is called a Borel measure.

Definition 43 Let G be a locally compact Hausdorff space. Let a-algebra M

contain all the Borel sets in G. (Thus B C M.) Let p be a positive measure.

Then

1. For A C G, the measure defined by

p(A) = inf{ p(U): A C U, U open}

is called an outer measure of A. A measure p with this property for all

A E M is called outer regular.

2. For A C G, the measure defined by

p(A) = sup{fp(K) : K C A, K compact}

is called an inner measure of A. A measure p with this property for

every open set A and for every A E M with A(A) < oo is called inner

regular.

3. If p is both inner regular and outer regular, then p is called regular.

Definition 44 A Radon measure on G is a Borel measure which is finite on

compact sets, outer regular on all Borel sets, and inner regular on all open

sets.
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Definition 45 Let G be a locally compact Hausdorff topological group. A left

Haar measure on G is a nonzero Radon measure p which satisfies 11(gA) =

y(A) for all g E G and for all open A. Similarly, a right Haar measure satisfies

p(Ag) = p(A).

A few other often encountered terms in measure theory are defined below.

Definition 46 If (G,.M,p) is a measure space, then a set B E M is called

a null set if y(B) = 0.

Definition 47 A measure y whose domain M contains all subsets of null sets

is called complete.

Theorem 108 Let G = R and let M be the Borel u-algebra defined on G.

Let W : G --+ R be any increasing, right continuous function. Then there is a

unique measure

pp((a, b]) = -(b)- (a)

for all a, b E G. If v is another such function, then py = p, if and only if

S- v is a constant. This is Folland Theorem 1.16 [85].

Definition 48 The completion of this measure, when p(g) = g for all g E G

is called the Lebesgue measure, and this measure is usually denoted by m.

Lebesgue measure on RIt is the completion of the n-fold product of the Lebesgue

measure on R.
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Definition 49 Now we return to measure space (G,.M,p) and group (.F,E)

with

M M---F

1. When

F= -oo}U RU{+oo}

and e is addition, then p is called a signed measure.

2. When .F = C, the set of complex numbers, with ED being addition, then

p is called a complex measure.

3. When Ip(G)I < oo, then y is called a finite or bounded measure.

Definition 50 Let M be the power set P(G) of G. The power set P(G) is

the collection of all possible subsets of G.

P(G) = I x E G}

In particular, each element 9 E G is a member of P(G). Two special cases are

important. Let p(G) = f where g E G and f E F.

1. When F = N{0,1,2,...}, and f = 1 where E) s addition, then p is

called a counting measure.

2. Let p(go) = f for one specific go E G, and p(G) = E for g E G, g # go,

where f E F, f # E. When T = N, f = 1, and E = 0, then p is called
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the Dirac measure, atomic measure, or the point mass at go. The group

operator E is addition.

H.4 Topological Group Theory

This discussion is taken from Folland (p. 312 if) [85] or it is motivated by

Folland. We begin with a definition.

Definition 51 A topological group (G, o, r) is a group (G, o) with a topology

T defined on G such that the group operator o and the group inverse mapping

g i g- 1 are continuous with respect to r.

Let (G, r) be a topology. Then (G x G, r x r) is also a topology. Let o be a

mapping o : G x G '-- G where o is the group operator of group (G, o). Since o

is a continuous operator, then for any D E r we know that its preimage under

o is some A x B E r x r. The awkward formal notation is o-1 (D) E r x r for

any D E r. Because we carefully constructed T x r, we know that A E r and

B E r. In nicer notation, we say A o B '-v D is continuous with respect to r.

Definition 52 Let A, B C G and g E G. Then

1. gA =goA = {goalaE A}.

2. Ag= Aog= {aoglaEA}.
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3. A- 1 
- {a-1 a E A} where a-' is the element in G that is the group

inverse of a.

4. AB=AoB={aobjaEA,bEB}.

Definition 53 If A C G and A = A-', then A is called symmetric.

Note that A-' is the set of group element inverses

{-1 1 g E A} def A-'

Note that the conditions A C G and A = A-' are not sufficient to define A to

be a subgroup of G. For example, let A be all elements of G except the group

identity element e. Then A C G and A = A-' and yet A is not a group. Note

that AA- 1 is not a set consisting of only the group identity element.

AA-' = {a o b-'I a, b E A C G}

In the general case of A being a subset of G (but not a subgroup of G), we

cannot guarantee that a- 1, b-' E A. Being a subset is different than being a

subgroup. We cannot even claim that

{aobl a, b E A} C A

When A = A-', then

A-= {a-' a E A} = A

implies a- 1 E A. We cannot claim

{aob-I a,bE A} C A
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even ',-ough {b- b E A} = A. In our example of A = G\{e}, when a = b,

then a o b- e A.

Some basic properties of topological groups are given by Folland, as follows.

Proposition 44 This is due to Folland [85]. Let G be a topological group.

Then for (G,o, T) :

1. The topology of G is translation invariant. Thus, if U E r and g E G,

then goU E rand U og Er.

2. For every neighborhood A of e, there is a symmetric neighborhood B of

e with B C A.

3. For every neighborhood A of e, there is a neighborhood B of e with

BBcA.

4. If (H,o) is a subgroup of (G,o), then so is its closure (1I,o).

5. Every open subgroup (A, o), A E 7, of ((, o) is also closed.

6. If A and B are compact subsets of G, then AB is also a compact subset

of G.

I have lost record of the pedigree of the following definitions.

Definition 54 Let (G, o, r) and (I1, o, a) be topological groups having the same

group operatoro. 1I is a topological subgroup of G if a C r. Usually, a = rn it.
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Definition 55 Let H be a topological subgroup of G. If H is compact, then

H is a compact subgroup of G.

Definition 56 Let H be a compact subgroup of G. Then H is a maximal

compact subgroup of G if there is no other compact subgroup A of G that

contains H. Note that G can possibly have more than one maximal compact

subgroup.

Definition 57 Let a, b E G be fixed elements. Let (p be a continuous function

on the topological group G. Let 11-1 be a norm on this space of functions. Let

g E G be an arbitrary element. Then

1.

(Lap)(g) def W(a- 1 og)

is called the left translate of V through a.

L.ob = LaLb

pis called left uniformly continuous if for every c > 0 there is a neigh-

borhood V of e such that JILa'p - 'pjj < f for a E V C G, where e is the

group identity in G.

2.

(Ra')(g) def cp(g o a)
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is called the right translate of V through a. Raob = Ra~b. R is called right

uniformly continuous if for every e > 0 there is a neighborhood V of e

such that IIRao - W11 <c for a E V C G.

Proposition 45 If w E Co(G), the space of continuous complex-values func-

tions p(g) on G with compact support, then W is left and right uniformly con-

tinuous.

We continue with Folland's discussion of the Haar measure.

Proposition 46 Let G be a locally compact Hausdorff topological group. Let

C+ dOef {IV E Cc(G): V > 0 and I1111 > 0}

Then

1. A Radon measure p on G is a left Haar measure if and only if

jM(a) def p(A-'), A C G open

is a right Haar measure.

2. A nonzero Radon measure p on G is a left Haar measure if and only if

J Wdp= fLa(Pdp

for all V E C+ and a E G.

3. If j is a left Haar measure on G, then p(U) > 0 for all nonempty open

U C G, and fpdp >0 for all f E C+.
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4. If p is a left Haar measure on G, then p(G) < oo if and only if G is

compact.

Theorem 109 Every locally compact Hausdorff topological group possesses a

left Haar measure. This is Folland [85] theorem 10.5.

Theorem 110 If A and v are left Haar measures on G, then there exists c > 0

such that p = cv. This is Folland [85] theorem 10.14.

Proposition 47 Left and right Haar measures are mutually absolutely con-

tinuous. This is Folland [85] theorem 10.18.

Theorem 111 Let G be a compact Hausdorff topological group. There there is

a unique real-valued function I, called the Haar integral, defined for continuous

real-valued functions W on G, such that:

1. I( P + P2) = I(Soi) + I('p2).

2. I(cýp) = cI(W), where c E R.

3. If 'p(g) > 0 for all g E G, then I(ýp) > 0.

4. I(e) = 1.

5. I(R,,W) = I('p) = I(Laso) for all a E G. Often the notation f '(g)dg is

used for I('p). For example, this property can be written as

J w(g o a)dg = I Jo(g)dg = J(a-1 o g)dg

This is Bredon [43] theorem 3.1.
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H.5 Matrix Groups

There are some standard groups in the theory of matrix groups. The following

were taken from Curtis [64]. You are already familiar with the notation R for

the set of all real numbers and C for the set of all complex numbers. The

next level of generalization is the set of quaternions, denoted H. For the sake

of generality, we let K E {R, C, H}.

Definition 58 Mn(K) iF the vector space of set Kn over field (K, +, .). It

distributes the field over the set as

b(x + y) = bx +by

where b E K and x, y E Kn. This is called an algebra.

Definition 59 If A is an algebra, then x E A is a unit if there is some y E

A such that

xy = yx = 1

Le., x is a unit if it has a multiplicative inverse. If A is an algebra with

associative multiplication and U C A is the set of units in A, then U is a

group under multiplication.

The group of units in the algebra consisting of n x n matrices in field K is

denoted by GL(n, K), and is called a General Linear group. Another notation
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Table H.1. Notation for Types of Orthogonal Groups

Notation Group Name

0(n, R) = 0(n) Orthogonal group

((n,C) = U(n) Unitary group

0(n, H) = Sp(n) Symplectic group

used is M,,(K) = GL(n, K). Often, when the notation Mn(.) is used, it refers

to the set of nonsingular n x n matrices. So, when K = C, we can use M"(C).

Some special groups are the class of orthogonal groups 0(n, K), defined

by

0(n, K) = {A E M,(K) 1< Ax, Ay >=< x, y > for all x, y E K }

When A E 0(n, K) then AAH = I,, and AHA = I,,. Here, the notation spe-

cializes. The notation for orthogonal matrix groups is given in table H.1.

The determinant of A E 0(n) is det A E [-1, 1], and of B E U(n) is

det B C {ei), 0 C R}

When attention is restricted to those cases where det A = 1 and det B = 1,

special groups are formed. Notation for these special groups is given in table

H.2.

Let A = A' E Mn(C). Can we make a group from the set of Hermitian

matrices? Let

H = {A E M,(C)I A = A"}
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Table H.2. Special Orthogonal Groups

Notation Group Name

{A E 0(n) detA= 1} = SO(n) Special Orthogonal Group

{B E U(n) I detB = 1} = SU(n) Special Unitary Group

Then H is the set of all n x n Hermitian matrices. (Recall, H is the set of

quaternions. The font style is significant in the notation.) Let us see if (H\0, .)

is a group where the operation is ordinary matrix multiplication. The set H\O

is the set H with the zero matrix removed. Suppose

and

2 1 -
1+i 1)

Both A and B are in H\0. However,

C=A.B= 1+ 1

is not in H\O. Thus, (H\O,.) cannot be a group because it is not closed under

matrix multiplication.

Lemma 24 If A and B are Hermitian, then AB is Hermitian if and only if

AB = BA. This is Nomizu exercise 8.4.1 (p. 237) [193].
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Proof. Let A = AH, B = B". Then

(AB)" = BHAH = BA

The statement that AB is Hermitian means that (AB)H = AB. Thus AB is

Hermitian if and only if AB = BA, or equivalently if AB - BA = 0, which is

a form familiar to those who have studied Lie Theory.

To further explore, suppose we consider the set of Hermitian nonnegative

defin:te matrices. From Johnson [124] we have the example

A=(1 3)

3 10

B=
-3 10

and
AB /-8 27

AB=
-27 91

Both A and B are Hermitian (symmetric) positive definite. However, AB is

not definite, positive or negative. In looking at xHABx, if X1 > then

XHABx < 0. If X 2 < , then xHABx > 0.

Here are two more examples of structures that fail to form a group. Let

X = XH be the set of all Hermitian matrices that are nonsingular. Let

A, B E X. Now, define B o A = BHAB. The operator o is a binary operator,
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and BH AB E X.

(BHAB)H = B1H A H B = BHAB

Let us see if it is associative.

C o (B o A) = C o (BHAB) = CHBHABC = CBABC if B = BH, C=CH

(C o B) o A = (CHBC) o A = CHBCACHBC

=CBCACBC if B = BH, C=CH

Thus

Co(BoA) $ (CoB)o A

and therefore (X, o) is not a group because o is not an associative operator.

Similarly, AOB = BHAB is not a group because

CO(BOA) = CO(AHBA)

=ABACABA, for A = AH, B=BH, C=CH

(COB)OA = A H(COB)A = AH(BHCB)A

=ABCBA, forA=A H, B=BH, C=CH

We will want to take advantage of properties of topological groups. In

preparation, the following remarks are taken from Bredon (p.5 if) [43I. The fol-

lowing groups are topological groups with the relative topology from M,,('):

GL(n,.F), SL(n,.F), O(n,.F), and

SO(n, F) = O(n,.F) n SL(n,.F)
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where the field F may be taken over C or R. U(n) = O(n, C) is closed in

M"(C) Z C0<. For matrix U E U(n), UH is a continuous function of U and

UUH = L,. Thus U(n) is bounded in Mn(C). Thus U(n) is compact. Because

SU(n) is also a closed subgroup of U(n), then SU(n) is also compact. In

fact, Gross and Richards (Section 1.3)[96] remark that O(n,.F) is a maximal

compact subgroup of GL(n, .F).

Let A, B E O(n, K). Then

(AB)H(AB) = (AB)(AB)H= In

Thus O(n, K) is closed under matrix multiplication.

H.6 Group Invariance Property of the Vec-

tor Complex Normal Distribution

In this section we establish a group invariance property of the vector complex

normal distribution. The work done here is a slight generalization of that

done by James [120], and I think a necessary background for understanding

his paper which revolutionized thinking about the statistical distribution of

sample eigenvalues. What is special about the approach given now is the

application of the invariance argument to the distribution rather than just

some factor terms of the density function. This is a step towards incorporating

a measure-theoretic approach with the group invariance ideas which will lead
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to an ability to deal with a larger class of distributions and perhaps to an

ability to incorporate these ideas into sensitivity analyses.

We begin with some abstractions. We are going to define a set G whose

elements are pairs of matrices. A special operation will be defined which will

provide a rule for combining one set element with another set element. We

will then see that this set, with the operator, forms a group. The next step

will be to define a set A upon which elements of G will act. We will establish

that we have defined a transformation group which justifies our use of the

machinery of some topological group theory. We then apply our findings to

the vector complex normal density function to study invariance properties. In

the process, we also see the distinction between a mapping and a change of

variables crystalized. This section is really the link between the application

and the abstract mathematical work required.

H.6.1 Construction of a Group

This work is supplied by me.

Define a set G by

G def {g = (L,U) L E Mm(C),UUH = I } (H.8)

and a binary operator o by

g2o gl def (L 2 , U2 ) o (LI, UI) def (L 2L 1 , U, U2) (H.9)
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The identity element is e = (I,,, I,,). The inverse element g-4 of g is given

by g-1 = (L- 1,UH). Then the claim to be tested is that (G,o) is a group.

To show this, we must show that o is a binary associative operator, that with

this operator there is an associated element e in G that is an identity element,

and that each element in G has an inverse element in G associated with this

operator.

The operator o was defined to be a binary operator between group elements

g, and g2. We now examine if o is associative, as implied by the claim that

(G, o) is a group. To do this, we have to show

(g3 o0g2) o gl = g3 0 (g2 o0g1)

for arbitrary elements g1, g2, g3 in set G. We apply the definitions and observe

the results.

(g30g2) ogl = ((L 3, U3) o(L 2, U2))o(L1 ,U1 )

= (L 3L 2, U2U3) o (L 1 , UI) = (L 3L2 L1, U1U2 U3)

g3 0 (g29o g0 ) = (L 3, U3) o ((L 2, U2 ) 0 (LI,Ui))

= (L3 , U3) o (L 2L I , UjU 2) = (L 3L 2L,, U1 U2U3)

From the equality of the two approaches, we can conclude that o is an asso-

ciative operator.

We now examine the element e to see if it really is an identity element. To
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do this, we must show that g o e = e o g = g.

g o e (L, U) o (Im, I.) =(LIm, IU) = (L, U) = g

e o g =(Im, I.) o (L, U) = (ImL, UI.) = (L, U) = g

From this we can conclude that e = (I,,, I.) is the group identity element.

Next, we verify that each element of G has an inverse which is also a

member of G. To do this, we must show that for an arbitrary g E G that there

is an element g- 1 E G such that g o g-' = e.

g o0g-1 = (L,U) o (L- 1 ,UH) = (LL-l, UU) = (I,,,,In),= e

where UUH = I,, implies U 1 = UH, which in turn implies UHU = I.

g-1 o g = (L- 1 ,UH) o (L,U) = (L-lL, UUH) = (I,,I,,) = e

Thus each element g has an inverse. We conclude that we have a group.

By the theorems from group theory, we know that e is unique, and that

for each element g E G that the associated g- 1 E G is unique.

H.6.2 Action Set Definition

This work is supplied by me.

We next define a set A and a rule for operating on A by elements of group

(G, o). Let A be the set of all multivariate complex normal probability distri-

bution (or measures), Pz(p, E) where EH =E > 0. Denote the multivariate
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random variable by Z, the mean by ai, and the covariance matrix by E. You

can consider (p, E) as an index that selects a particular distribution from set

A. Define the action on elements of A by elements of group G by the set of

simultaneous mappings g[a], where a E A is one specific Pz(p, E), by

(L, U)[Pz(p, E)] = PLzu(LuU, iEL H) (H.10)

The traditional expression of this action is the set of simultaneous mappings

Z -LZU= Y

y• LpU =M (H.11)

E• LEL H = SI

The density function exists when E is nonsingular. For Z -, CNp,,,(p, E, I) we

have by theorem 51

dFz(Z) - 1 etr[-(Z - p)HY-I(Z - p)](dZ) = a (H.12)

This represents just one element a E A.

H.6.3 Invariance Demonstration

This work is supplied by me.

Now, pick an arbitrary element g = (L, U) E G. When we apply g to a we

are picking a new element b E A. Note that this is a mapping, not a change

of variables.

b = g[a] = (L, U)[dFz(Z)] = 1 etr[-(Y - M)HS-1 (Y - M)](dY)

(H.13)
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= 1 etr[-(Y - LpU)H(LELH)-I(Y - LpU)](dY)ir-P ILELH I'

1
Irnp IrEl• IL 12n

x etr[-UH(L-'YU-l - p)HLHL-HZ-HL-L(L-lYU-1 - p)U](dY)

_ 1 etr[-(L-1 YU- 1 - ,1)HE-l(L-lYU-l - p)](dY) (H.14)- np i1E • IL lI n

This is the new point b E A. We wish to investigate the invariance properties

associated with this mapping. To be able to compare, we now change variables

from Y to Z, while remaining at the location b. Let

Y = LZU (H.15)

By theorem 34 we know the Jacobian of this transformation is

J(Y --- Z) = Idet LI2n Idet UI2p = Idet LI2 n

since UUH = I implies Idet U12 ' = 1. So,

1
b = I ×

x etr[-(L-'LZUU-1 - P)HE-i(L-lLZUU-l - p)] JJ(Y --* Z)I (dZ)

-n I y 1 etr[-(Z - p)"E_'(Z - p)] jL12n (dZ) (H.16)

;_T etr[-(Z - p)HE-1(Z - p)](dZ) = a (H.17)

Thus, A is invariant under action by group (G, o). We have shown that for

any a E A that ga = a for all g E G.
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Appendix I

ELEMENTARY HILBERT SPACE

THEORY

This is a very terse review of the fundamental definitions of Hilbert space

theory. The following definitions are taken from Rudin [230], slightly modified

to fit our applications.

Definition 60 A complex vector space H is called an inner product space (or

unitary space) if to each ordered pair of vectors x and y in H there is associated

a complex number < x, y >, called the inner product or scalar product of x

and y such that the following rules hold.

(a) < y, x > = < x, y >*. The asterisk denotes complex conjugate.

(b) <z, x + y > = < z, x > + <z, y> if x, y, and z are in H.

(c) <x, ay > = a < x, y> if x and y are in H and a is a scalar.

(d) <x,x> > 0 for all x in H.

(e) <x,x >= 0 only if x = 0.

Note that (b) and (c) say that < x, y > is linear in the second argument.

This is the change I have made from the usual mathematician's definition. The

reason for doing this is to be able to use the natural notation of the Hermitian

transpose in the definition of an inner product. For example, < x, y > = x Hy

is a valid inner product.
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Definition 61 Define the inner product space norm of x to be

IIxIIH =< x,x >1/2

using the non-negative square root.

Definition 62 Define the distance (or metric) between x and y to be

dH(x,y) = IIx - YIIH

Then all the axioms of a metric space are satisfied. Thus, our inner product

space H is now also a metric space.

Definition 63 If every Cauchy sequence, using dH(x, y), converges in H, then

this metric space is complete. When this is true, our complete inner product

space H is called a Hilbert space.

Example 7 Vectors in Cn with inner product < x, y >= xHy form a Hilbert

space.

Example 8 If p is any positive measure, L2 (p) is a Hilbert space with inner

product < f, g >= fx f*g dy. Note that

IfllH =< f,f >1/2= j If 12 dpt} 1/2 = 11f112
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Appendix J

COMPLEX VECTORS

In this section we will define a vector space and by way of an example show

some of the problems associated with treating a vector space in n-dimensional

complex numbers C' as a vector space in 2n-dimensional real numbers R 2nx2.

We first define a field and then a vector space.

J.1 Abstract Field

A vector space requires a special kind of group called an abelian group. An

abelian group is a group that also obeys the following rule (Group Rule number

5).

5. For all a E G and b E G, then aOb = bOa. The order of the elements

is not important. When this is true, we call the operator 0 a commutative

operator. We say that a and b commute under 0.

Let G/{en} denote the set G with the element eo removed. Now, equip

G/{eo} with an operator o such that (G/{eo},o)g is an abelian group. We

now have defined two groups, (G, 0) and (G/{eo }, o). When we glue these

two groups together using rules (6) and (7) below, we get a field. We denote

this by F = (G, 0, o) when the context is clear. Group Rules (6) and (7) are

called the distributive laws.
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6. For all a, b, c E G, then a o (bnc) = (a o b)O(a o c).

7. For all a, b, c E G, then (bI~c)o a = (b o a)O13 (c o a).

We are familiar with two common fields: (i) the field over the real numbers

(R, +,-) where + is ordinary addition and - is ordinary multiplication, and

(C, +-, "c) where +c is complex addition and "c is complex multiplication.

J.2 Abstract Vector Space

A nonempty set V, together with operators A and * is said to be a vector

space over a field F = (G, 0, o) if the following rules (a) through (j) hold.

(a) For each x E V and y E V, then xAy E V.

(b) For each x E V and a E .F, then a* x E V.

(c) xAy = yAx for all x, y E V.

(d) (xAy)Az = xA(yAz) for all x, y, z E V.

(e) There is an identity element ea E V such that ea A x = x for all x E V.

(f) There is an inverse element y E V for each x E V such that xAy = ea.

(g) For all x, y E V and a E F, we have the distributive law that

a * (xAy) = (a *x)A(a * Y) E V

(h) For all x, y E V and a E 77, we have the distributive law that

(aOb) *x = (a*x)A(b *x) E V
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(i) For all x E V and a, b E F, we have the associative law that

a*(b*x) = (aob)*x

Note the operators! There is a change.

(j) There is an identity element e. where e. * x = x for all x E V and e. is

the identity in G/{eo} under o.

We denote the vector space by

V = (V, A,.,F)

or

V = (V, A,*,G, 0, o)

J.3 Complex Vector Space

It is occasionally claimed that a vector space in Cn is merely a vector space over

R2n. It is not quite that simple. For example, consider Broida and Williamson's

problem 2.2.4 [47]. The vectors u = (1 + i, 2i) and v = (1, 1 + i) in C2 are

linearly dependent over C, but linearly independent over R. In C,

iu + (1 - i)v = 0

Consider the elements u, v E V as in a vector space over R. This means

that the scalars come from R. In this case, there are no scalars a, b E R = F
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such that au + by = 0. Therefore (V,A,*) = (C2,+,.) is not a vector space

over the field of real numbers F = (R, +,.).

Consider representing an element in V given by (a + ib, c + id) in C2 as

(a,b,c,d) in R4 . Then u and v are expressed as (1,0, 1,2) = u and (1, 1,0, 1) =

v. These are linearly independent whether the field Y is taken to be R or

C. What is missing is the accounting for the structure of C under complex

multiplication. There is a way of representing V where V = C" and Y = C,

with V E R 2nX 2 and .ER2X2. The complex number x + iy E C is isomorphic

to the matrix

Using this form, matrix addition and matrix multiplication yield the same

answers as complex addition and complex multiplication in the scalar case. In

our vector space, care must be taken in defining a* x where a E PCR 2X 2 and

x E V C R2n×2. For

zi( - )

zz 1

X--

Zn
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and

we define

(a ( Z,,

where 0 is matrix multiplication of matrices in R"2 '. Then from our example,

1 -1

1 1

U -

0 -2

2 0

1 0

0 1

1 -1

11

0 -1

1 0
U-v = W-

-1 -l

1 -1
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and

0 -1 1 010)0 01
-1 0 - 1 -1 -1

We are now back to a structure where u and v are linearly dependent.

J.3.1 Verifying if a Field is Defined

It might be worthwhile just to verify that we really do have a field and a vector

space under this structure. Let

t 1 -- al -- 2Ca
a2 a,

(bi -b2
b2  b,

and

C2 C
2

Define 01 to be matrix addition and o to be matrix multiplication. Let G be

the set of all 2 x 2 matrices of the form

( ::

where x, y E R. Then we examine each of the properties.
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1a.

a, a+b, -(a2 + b2)
a 2 + b2  a, + b,

Thus 0 is well defined on G.

2a.

(a~b) ( (a, +bi)±+ci -[(a2 +b2)+ C21(aOb)O =c

(a2 + b2 ) + C2  (a, + bi) + c

a, a+(b, + cl) -[a2 + (b2+ C2)]
=aO(bOc)

a2 + (b2 + C2 ) a, + (b, + cl)

Therefore 0 is associative.

3a. The identity element of G under 0 is

= (0 -0
e-o

0 0

which is the zero matrix.

4a. The inverse element of

(::)
is

-- 9 -- x

5a. G is abelian under 0, which is inherited from addition of real numbers

in (R, +).
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We also need to verify that (G/{eo3}, o) is an abelian group. LetG

G/{eo}

lb.

aob= a, -a2  b, -b2

a2  al b2 b,

=(alb, - a2b2  -[a2b, + alb2]

a~,+ ajb2  alb, - a2b2  )
Thus a o b is well defined in G

2b.

(a b)cc (alb, - a2b2  -[a2b, + alb2] 3 C( -C)

a2.,1 + ajb2  alb, - a2 b2  C2 I

=( (alb, - a2b2)cl - (a2b, + ajb 2)C2 -f[(a 2b, + ajb 2)CI ± (alb, - a2b2)C2]

(a2b, + a1 b2)Ci + (alb, - a2b2)C2 (alb, - a2b2)CI - (a2b, + ajb2)C2 )
al(bici - b2C2) - a2(b2Ci + bIC 2) -[a1(b2CI + bIC 2) + a2(bic, - b2C2)](al(b2CI + bIC2) + a2(bic, - b2C2) al(bici - b2C2) - a2(b2CI + bIC 2))

a, -a 2 1c1 - b2C2  -[b2CI + biCrj]

a2  a 2cI + bIC2  bc,c - b2C2

-a)= H~boc)
~a2 a, b2 b 2 C

Therefore Gis associative under o.
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3b. The identity element is

(i o

4b. The inverse of

y xY

is

x2 + Y2

5b.

boa- = I

b2  b, a 2  a, b2ai + bia 2  bia, - b2a2

al b, - a 2 b 2 -[alb 2 + a 2bu] ) a( , -a 2  b, -b 2  b

ajb2 + a2b; alb, - a 2 b2  a2 a, b2 b)

Thus G is abelian under o.

6. (a -a 2  b, -b 2  CI-c 2

a o (blc)= +

a 2  a, b2  b) c2  cI

= a, -a2 )(b, + c, -[b2 + C21

a 2  al b2 + c 2  b, + c )
a, (b, + c1) - a2(b2 + c2) -[a,(b 2 + c2) + a 2(b, + cI)]

a,(b2 + c 2 ) + a2(b, + c,) a,(b, + c,) - a 2(b2 + c 2 )
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alb, - a2b2 + alc1 - a2C2 -(alb2 + a2b, + aIC 2 + a2cl11(alb2 + a2b, + alC2 + a2ci alb, - a2b2 + ale, - a2C2 )(alb, - a2b2 -Ialb2 + a2b1 ] ] (a 1c - a2C2 -[aIC 2 + a2CI]

alb2 + a2b, alb, - a2b2  ) I.,aC 2 + a2c, ale, - a2C2 )(a, -a2  (bi -b2 ' (a, -a2  (C1  -C2 )
a2  al) b2  b1 ) a2 a,) C2

= (a o b)O:(a o c)

Thus the first distributive law in F is satisfied.

7.

(boc) o a b, + l-b +C1 a a 2 )

b2 + C2  bi + c a2 a

(b, + cl)al - (b2+ C2)a2  -[(b, + ci)a 2 +(b2+ C2)al]((b, +±Cl)a2 +(b2+ c2)ai (b, + ci)al - 0b2+ C2)a2 )
bial - b2a2 + cial - c2 a2 -[bia 2 + b2al + cja 2 - C2aj](bja2 + b2al + cja 2 - C2al bial - b2a2 + cial - C2a2 )(bial - b2a2 -(bia2 + b2ai] '~ (cia, - C2a2 -[cia 2 + c2ai]

bja 2 + b2al blal - b2a2  ) \cja2 + C2a1  cial - C2a2 )
(bi -b2'( a1  -a2  +(Cl -C2  (a, -a2~

~b2  b1 ) a2  a, )~ C2  C1) a2  a,)

=(b o a)o(c o a)
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Thus the second distributive law in F is satisfied.

Therefore, (G,0, o) is a field. If we let an element of V be

Z,

Zn

where

Zi= I
yi xi

define the operator A to be matrix addition.

(a) Then for every x, y E V we know x A y E V.

(b) From examining a o b, we know that the product of two matrices of the

form of Zi will again have that form. Thus

a o Z

a x=

a o Z,,

is in the same form as

z1

Zn

Therefore a * x E V.

(c) Because matrix addition is abelian, we know x A'y = y A x for all

x,y E V.
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(d) Because matrix addition is associative, we know

(xAy)LXz = xA(yAz)

for all x, y, z E V.

(e) The identity element eA E V is the 2n x 2 zero matrix 0 for all x E V.

(f) The inverse element of x E V is -x where

-Z-

-Zn

and (X Yi ~
-Zi=

-- Yi -- xi

(g)

ZIzI + ZIY

a*(xAy) =a*

Znx + Z.Y

a o (Z,, + Z1 y) (a o Zl,) + (a o Zy)

a o (Z,, + Z,,y) (a o Z.n) + (a o Z.y)

by the first distributive law in X7. This, in turn, equals

a o Zi, a o Z1

+ • (a*x)A(a*y)

a o Z,, a o Z,,
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Thus the first distributive law in V is satisfied.

(h)

Z1

(aOb) * x = (aob) *

Zn

(a[b) o ZI (ao Z1 )[O(bo Zi)

(aOb) o ZA (a o Z,)O13(b o Z,)

by the second distributive law in F. This, in turn, equals

a o Z1  bo Z1

= (a* x)A(b x)

a o Z, b o Z7

Thus the second distributive law in V is satisfied.

(I)

(bo Z,

a*(b*x)=a*

bo Z,

ao(bo ZI) (aob) o Z,

ao(boZ,) (a o b) o Z,

by associativity of o in F, which gives us (a o b) * x. Thus the associative law

in V is satisfied.
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(j) The identity element

e (1 0)

in d under o satisfies the scalar identity in V

(e, o Z1

e0e*oZX

Conclude that we successfully defined a linear vector space (V, A~, *,.F) =V.

We have shown that the vector space

(Cn, +, *, C, ±,*)

is isonmorphic to

(R 2nx 2, + R. R2 x2,

where the operators + and - are context sensitive. One valid observation is

that developing complex vector theory using only real numbers is really more

complex than sticking with complex numbers. We have shown that Cn , as a

vector space, is not isomorphic to R 2 n. This omits a lot of structure present in

Cn . As a curiosity, we also showed that under proper conditions, special kinds

of matrices can be vectors and scalars.
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J.4 Construction of Vector Space in R 2n Iso-

morphic to Cn

I want to construct a vector space in R2n that is isomorphic to a vector space in

Cn where the vector space CI over the field C has the usual complex addition

and multiplication operators.

Let elements of GC be in R2 , such as(:)
which correspond to elements of Gc in C such as a + ib. Then the addition

operator 0 R defined by

where + is ordinary addition corresponds to 0c defined by

(a + ib)Oc(c + id) = (a + c) + i(b + d)

The multiplication operator o0 defined by

a c ~a -c - b -d

b d b c+a.d)

where + and - are ordinary addition and subtraction, and is ordinary mul-

tiplication, which corresponds to oc defined by

(a + ib) o, (c + id) = (ac - bd) + i(bc + ad)
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Let VR C R2I have typical elements like

al

b,

an

bn

to correspond to Vc C Cn with elements that look like

al + ibi

an + ibn

Define operator AR to be ordinary real element-wise addition between elements

of VR, and Ac to be ordinary complex element-wise addition between elements

of VC. Finally, define the operator *R between elements of VR and GR to be

a, x. a, - y. bi

b) x- bi + y+ a,

*R

an X an - y bn

bn X, ba + y c pas

where ,-.are the usual real arithmetic operators, which corresponds to the



735

operator *C defined by

( a,-+ ibi (xc.al-y.bi)-+i(x.bi + y.a,)

(x + iy) *c

a,,+ zb,, (X. an- y"bn) +i(x" bn +y-"an)

With these definitions, then vector space VR is isomorphic to Vc. In this sense,

R2n , Cn.

J.5 A More General Vector Space

In this part, we define a vector space in a way that buys us more freedom that

any of the previous definitions. Vector spaces usually require that the vector

be constructed from elements of the field of scalars, such that F: C S and

V C Sn. For example, our experience is most frequently with the structure

.F x Fn. However, this is not a necessary restriction.

Let (.F,%, +) be a field with additive identity 0 and multiplicative identity 1.

Let (V, N) be an abelian group with identity 6. A vector space is the Cartesian

product F x V with elements x = (a, v) and operators D and D, denoted by

V = (.F x V, +,

or by

V = (F x V,E,,0)

with the following properties.



736

(1) ED: (.F x V ,FX )V x .V.

(2) 0: (.F,.F x V) --+• x V.

(3) x e y = y ( x for all x,y E F x V.

(4) (x eD y) E& z = x (G (y E) z) for all x,y,z E F x V.

(5) [Key point] Let 0 = {(0, v), (a, 0)} for all v E V and a E F. Then

(a) 00x = aGe for all x E .F x V, a E .F, e E 0.

(b) e E x = x for all x E F x V, e E 0.

(6) [Key point] Let -X = {(-a,v),(a,ev)} where -a is the inverse of

a in (.F,+, -) under +, and ev is the inverse of v in (V, M). Then for each

x = (a, v) E F x V there exist -X such that x @ (-x) E 0 for all -x E -X

associated with x.

(7) a0D(xE•y) = (aoDx)E (aoDy) for alla E Fand for all x,y E F x V.

(8) (a + b) 0 x = (a 0 x) E (b 0 x) for all a, b E F and for all x E F x V.

(9) 1 0 x = x for all x E Fx V.

(10) (a. b) 0 x = a® (b 0 x) for all a, b E F and for all x E F x V.
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Appendix K

COMPLEX MATRIX ALGEBRA

The results contained here are mecl anical in nature. Proofs of the partitioned

matrix determinant are interesting enough to go though once, but not to com-

mit to memory. Other theorem statements should be read, but the proofs are

mundane and time is better spent on other material. These proofs are included

because I had to do them to extend results from the real case to the complex

case.

K.1 Basic Definitions

Definition 64 Matrix A is Hermitian if it equals the transpose of its complex

conjugate, AH, which is called the Hermitian transpose.

Definition 65 Matrix A is called positive semidefinite or nonnegative definite

if xHAx > 0 for all x.

Definition 66 Matrix A is called positive definite if xHAx > 0 for all nonzero

X.

Definition 67 Matrix A is called negative semidefinite or nonpositive definite

if xHAx < 0 for all x.
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Definition 68 Matrix A is called negative definite if xHAx < 0 for all nonzero

X.

Definition 69 Matrix A is called definite if it is either positive definite or

negative definite.

Definition 70 Matrix A is called indefinite if xHAx > 0 for some x, and

xHAx < 0 for some other x. It is also possible for xHAx = 0 for some x.

Definition 71 Let A E C"nn. Then A is called orthogonal if AAH = AH A =

D is a diagonal matrix, not necessarily the identity matrix.

Definition 72 Let A E Cnxn. Then A is called complex orthogonal if AAT =

ATA = D is a diagonal matrix, not necessarily the identity matrix.

Definition 73 Let A E Cnxn. Then A is called orthonormal if AAT =

ATA = In.

Definition 74 Let A E Cnxn. Then A is unitary if AAH = AHA = In, and

thus A-' = AH.

Most authors call such a matrix orthonormal, using the same terminology

they use for real matrices. Many authors refer to this as orthogonal. Thus a

complex square matrix with orthonormal columns is called a unitary matrix.

(Stewart, p. 259.) [259].
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Example 9 From Nomizu (p. 250) [193], the following example illustrates

that orthogonal and unitary are not the same concepts. Let

Y=

Then yTy = I, but

YHY 3 - i2 v 2
yHy =__~ ~

i2V'2 3

Thus Y is complex orthogonal, but Y is not unitary.

[ew e0
X =

0 eiw

for w mir is unitary but not complex orthogonal. However, an orthogonal

real matrix is unitary.

Definition 75 Let A E C-xn. Then A is subunitary if AAH = I_ and

m < n, or if AHA = In and m > n. Here A- 1 is undefined.

Definition 76 Matrix A is called skew-symrmetric if A = -A

The covariance matrix of the complex normal distribution, when expressed

in R 2 nx2n is skew-Symmetric. When expressed in CnX", the covariance matrix

of the complex normal distribution is Hermitian.

Definition 77 Matrix A is called skew-Itermitian if A = -AH.
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Properties. The elements on the main diagonal are either pure imaginary

or zero. The imaginary part of A is symmetric. Im(A) = [Im(A)]T. As for

the real part, Re(A) = -[Re(A)]T. The diagonal of Re(A) is zero. A is skew-

Hermitian if -?A is Hermitian.

Suppose A = -AH. Consider BABH. Take its Hermitian transpose.

(BABH)H = BA11 BH = -BABH

Thus, BABH is also skew-Hermitian.

Example 10 Let

a+ib e+if

g( +ih c+id

Then

-a + ib -g + ih

_-e+if -c+id

For D = --4H, then wemusthavea= -a=O, c= -c= O,g =-e, and

f = h. Thus we have

ib e+if

-e + if id

Proposition 48 If A is positive semidefinite, then A is Herrnitian.

Proof. A is positive semidefinite (or, A is nonnegative definite) means that

xHAx > 0 for all x. Since xH Ax > 0, it must be real. So (xHAx)H = xHAx.

This implies

xHAHX -_ xHAx = XH(AH - A)x = 0
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for all x. Thus A = AH. Q]

K.2 Trace Identities

The various trace identities that have been worked out are ones that have been

required one or more times in subsequent work. This is particularly true for

those used in the evaluation of moments from characteristic functions.

Lemma 25 Let W,A E Cnxn, where W and A have no required structure.

Then

WAW= E~~lj

Proof. Let B = CAT where A, B, C, T E Cnxn. Partition C and T as

T = (TI, T2,... ,Tn), and

(C1

C"

Cn

Then

C1AT 1 C 1 AT 2 ... C'AT,

C 2AT1 C 2 AT 2 ... C 2 AT,
B=

CnAT, CnAT2 ... Cn AT,
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Consider element Bim, computed by

Al l  Ain Tim

Bim = CiATm = (Cil,''.,Cfin)

An "... Ann Tnm

n
E AjTjm
j=1

Now lt T= . The

nn n

= (C,... ,Cin) = E CiAWjTjm

n
E AnjTjm

j=1

Now let C = T = W. Then

n n

Bi,, m _ _ AtjBT4,Wjm
llj=l

0

Lemma 26 Let Bmxn and Znxm be complex matrices. Then

tr(BZ) = BjkZkj
j=1 k=1

Proof.

Bil B 12 "'" Bln 211 Z 1 2 ... Zim

B2, B22  B2,2  Z21 Z22 "" Z2m
tr(BZ) = tr

Bmi Bm2 ... Bin Zn1 Z,2 ... Znm

n nt n I*n n

E BlkZkl + E B2kZk2 + + Z BmkZk, = E E Bjkzkj
k=1 k=1 k=1 j=1 k=l

0-
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Lemma 27 Let Bm.n and Zmxn be complex matrices. Then

m n

tr(BTZ) = E BjkZ3 k = tr(ZB T ) = tr(ZTB) = tr(BZ T )
j=1 k=l

Proof.

Bi 1  B 21 "" Bmi Z11 Z 12  Zin

B 12 B 22 ... Bm2 Z 21  Z 2 2  Z2n
tr(BTZ) = tr

B 1 n B 2 n."- Bmn Zm1 Zm,2 Zmn

m m m

= ZBi&I + E Bj2 Zj2 + E+ BjnZjn
j=1 j=1 j=l

n m m n

E E BjkZjk =E BjkZik
k=1 3=1 j=1 k=1

n n n

E Z BlkZak + E B 2kZ2k + + F, BmkZmk
k=l k=1 k=1

Z11 Z1 2 "'" Zln B 1  B 2 1 " Bmi

tr Z 21 Z22  Z:•n B 12 B 22  Bin2  tr(ZBT )

Zml Zm 2  IoZn Bin B 2, ... ABnn

Because tr A = tr AT, we also have

tr(BTZ) = tr(ZBT ) = tr(ZTB) = tr(BZr)

0

Lemma 28 Let B, T E Cnxm be complex matrices. Then

ni m
tr(BTT ) = E E BlkTuk

1=1 k=1
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Proof.

Bu "'" Bim T ... T

tr(BTT ) =tr .. :trC

B, ... B.m Tim ... T.m

where C - BTT Element (i,j) of tr(BTT ) is

m

Cij= E BikT j k
k=1

Then

n n

tr(BTT ) = • Cu = >, BIklIk

Lemma 29 Let Bnxm and Znxm be complex matriceo. Then

m n

tr(BHZ) = Zkj
j=1 k=1

Proof.

B 21 BI" Z11 Z12 -. Zlm

B*; B*2 ... Bn2 Z2i Z22 ... Zim

t r(B HZ ) = tr B2

B;m B2m ... B,*m Znj Zn 2 ... Znm

n nl n n

= •BZkI + E BZ2 Zk2 + + Zm = •_ ; j•Zkj
k=1 k=1 k=1 j=1 k=l

0
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Proposition 49 Let B = BH and Z = ZH be n x n complex matrices. Then

n n-1 n

tr(BZ) = BkkZkk E z: 2Re{BjkZkj}
k=1 j=1 k=j+l

Proof.

B1, B 12 -'" Bn Z l Z1 I 1 ... Z

Bt2 B22  B2n Z21 Z22 " Zn*2
tr(BZ) = tr

B, B*... Bnn Zn1 Zn2 ... Z

n n n--I

= B BZ + B12 Z21 + E B•kZk+ ... + - BZnk + BnnZ.n

k=1 k=2 k=1
n n-I n

=)•BkkZkk + _ 2 Re(BjkZkj)

k=1 j=1 k=j+l

Lemma 30
n n

tr(Z2) = tr(ZZ) = jiZij
j=1

Proof.

Z11 Z 1 2  Zin Z11 Z 1 2 ... Zn

Z 21 Z22  "" Z2n Z21 Z 22  Z•n
tr(ZZ) = tr(Z 2) = tr

ZnI Zn2 ... Znn Zn1 Zn2  Znn

n n n n

= z z3iz,3 = E zz
i=1 j--1 1~ =1

03
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Proposition 50

n 71

tr(ZZ T ) - tr(ZTZ)= Z i

i=1 j=l

Proof. Let

Z = (Z1,,..Zn)= •

Zn

Zi are column vectors and the Zj are row vectors. Then

z[ ZTzI ... ZjTz

tr(ZTZ) = tr I ( Z . =tr

SZIj zj ZZ 1 ... z zn

n n n=z z= EE Zz
3TZ3

i=1 j=l

0

Proposition 51 Let Z E Cpxn. Then

p n
tr(ZH Z) EZ Iz jI 2

i=1 j=l

Proof.

Z; 1  Z2;1 ... Zp1  Z 1 1 Z 1 2 " Zn

z; 2 z;2 ... Z,*2 Z21 Z22 ... z2-
tr(ZHZ) = tr

Z* - ... • ". :

zIn zn p.. z zp, Zp2 .. zp
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Compute only the elements ending up on the diagonal. tr(ZHZ) =

Z 1 Zi i + Z; 1 Z 2 1

+..++ + Z2ZP2

z;.Zl. + ;2Z 27 .

+.. + z*,,zpn

p n P n

= _ zzz~E = E _ ZIJj2  IIZI12
:=l j=l i=1 3=l

where IIZI12 is the Frobenius norm for the matrix Z.

Alternate Proof. Let Z = (Z 1,..', Zn) where Zi E CP. Then

ZH ZiHZI ... ZH

tr(ZHZ) = tr .. tr•Z,

Z, zn ) z=z z
zz ~ZýZl ... ZZ

n n n n P
= = =E

i=1 i=1 3 1 j=1

Proposition 52 The two identities presented here are ones that occur in the

complex matrix normal distribution. The derivation is so short that it will be
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included in the identity statement.

A,, A12  A1n A*, A*, ... A..

A 21  A22  ... A2n AI2  A22  ".. An2

An1  An2  An n A;n A*n ... A;n

n n n

EAlkA*k E AlkA*k ... F AlkAnk
k=1 k=1 k=1

F A2kA* k E A2kA*k ... E A2kA*k
k=1 k=1 k=1

n n n

AnkA*Ik T AnkA~k ... E AnkAnk
Lk=1 k=1 k=1

Therefore

i,= AikAk[
k=1

B* BI ... BI l B 1 2  ".. Bin

B*2  B22  ... B,*2  B21  B 22  ... B2n

1E==Bj',. B2*,..." Bn*,. B,,I B,-2 ... Bn,

p p p

E B:2 B,1 =E B:2 B,2  ... E BIBIP- =1 s9= 8=1

p p p

8=1 B=1 S=1
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Therefore

E=j E B3 jB83

0

Lemma 31 Let A E 0 mxP, Z E CPxq, B E Cqxm. Then

m p q

tr(AZB) E E i~kk
i=1 j=1 k=1

P roof.

tr(AZB) =tr B, Bn

Atm )

where Ai is a row vector and B, is a column vector. Then

A'ZB, A'ZB 2 ... A'ZBm

A 2 ZR, A 2ZB2 ... A 2ZB",
tr(AZB) = tr

A m ZB, A`ZB2 .. A-ZBm

Zn1 .. Ziq Bli

m m)

ZpI .. Zpq Bqj

Bi,

(p p, p ijq pq
m~ Zj A Z jZ . YZAIZ-"

Bqi
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Lemma 32 Let A E C"xP, Z E CqxP, B E Cq×'. Then

tr(AZ T B) = •• E ZAijZkjBki
i=I j=l k=l

Proof.
A'

tr(AZ T B) = tr ZT (B " Bin)

Atm

where A' is a row vector and B1 is a column vector. Then

A'ZTB 1  A1ZT B 2 ... A'ZT Bm

A 2ZTB, A 2 ZTB 2  A2 ZTBm
tr(AZT B) = tr

Am ZTBi Am ZTB 2 ... A-ZTBBm

ZZl ... Zql Bli

Z Am
i=l i=l

ZIP.. Zqp Bqi

Bii

= Z AijZj,'", Z AijZqj)= A - m)AijZkjBki

j=l j=l i=l j=l k=I

Bqi

0

Lemma 33 Let A, B, C, D all be p x p (complex) matrices. Then

p P

tr(AB CD) = EZAAB'C DA
=i1 j=l
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where B = [B1, B2,,.., Bp] and D = [DID 2 ,.-., Dp].

Proof.

All A12  Alp BH

tr(ABHCD) = tr A2, A22  B2 C D, D2  DP

Ap, Ap2 ""App BPH

All A12  Alp IBHCD1 BH'CD2 ... BHCDp

A 21 A22  A2sp BHCD1  BHCD2 ... BHCD

= tr

Ap, Ap 2  App B.ICD, BPHCD2 ... BpHCDp

I do not have to do all the computations. I only need the sum of the diagonal

elements of the product. therefore

p p

tr(ABHCD) = E AtjBjHCDi
j=1 *=

Notice that the order of subscripts reverse. C3

Proposition 53 Let A, F, C, D all be p x p (complex) matrices. Then

P p
tr(AFCD) = ZZ AjjFJCDj

2=1 .7=1



752

where

F1

F 2

F=

and D =[Dl, D2,'-'Dp].

Proof. This is merely (but a useful) corollary to lemma 33. 0

Proposition 54 Let A, B, C, D all be p x p (complex) matrices. Then

p p

tr(AHBCD) = E ABBjCDi
1 j=1

Proof.

H
A11 A 12  Alp B 1

tr(AHBCD) = A2, A22  *At B2  C D, D 2  " Dp)

Ap, Ap2 ... App Bp

where

B1

B2B=

Bp
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and D D, D2  Dp Then

A*, A*, ... A;1  BICD1  BCD2 ... B1 CD

A12 A22 ... A 2  B2 CD, B2CD2 ... B 2CDptr(AHBCD) = tr

A*P A*P ... A;P BpCD1 BpCD 2 ... BpCDp

The sum of the diagonal elements is all that is needed.

HP P P P P Ptr(ApBCD) pppApiBjCD= A.Bj1CtkDk

i=1 j=1 i=1 j=1 k=1 i=1

K.3 Inverse

K.3.1 Partitioned Matrix Inverse

Lemma 34 Partitioned Matrix Right Inverse. Let Z E Mn(C) be partitioned

Let ZY = In where

Y is the Right Inverse of Z. Then

S= (A- CD-1 B)-1  -A-'C(D - BA-4C)-1

-D-1B(A - CD-'B)-1 (D - BA-'C)-'
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= [ ( CD1Byl ( -iC (D - BA-1C)-1

-D-IB 12

A and D must be square matrices. This is Graybill theorem 8.2.1 [95].

Proof. Although I did the following proof, it is a common and easy proof

that must have been done by many people.

A C R TI AR +CS AT +CU

ZY=
B D S i BR+DS BT+DU)

This implies

DS = -BR S = -D-'BR

and

AT = -CU = T = -A- 1CU

Substituting into the main block diagonal terms,

AR+ C(-D-1 BR) = (A - CD-1B)R = I, R = (A -CD-1B)-1

and

B(-A-'CU) + DU = (D - BA-'C)U = 12 =• U = (D - BA-C)-'

Substituting back into Y, we obtain Z-' = Y =

( )(A - CD-1 B)-1  (D - BA-.C)-1
-D-1B 12
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0

Lemma 35 Partitioned Matrix Left Inverse. Let Z E Mn(C) be partitioned

A CB( D)
Let ZY = In where

Y is the Left Inverse of Z. Then

-1 = (A - CD-1 B)- 1 ( 1 , -CD- 1)

(D - BA- 1C)-'(-BA-1 , 12)

A and D must be square matrices. Although I did this theorem and its proof,

it is so basic that it must have been done before.

Proof.

( R T (A C) (RAA+TB RC+TD)
YZ-=

S U B D SA+UB SC+UD

I(: 02)=In

01 12

This implies

SA = -UB • S = -UBA- 1

and

TD = -RC = T = -RCD- 1
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Substituting back into the main block diagonal terms,

RA - RCD-1 B = R(A - CD-1 B) = I> R = (A- CD-1B)-1

and

-UBA-'C + UD = U(D - BA-C) =12 = U = (D- BA-'C)-l

Substituting back into Y, we obtain

(A-CD-'B)-' -(A-CD-1 B)- 1 CD- 1

-(D - BA-'C)-'BA- 1  (D - BA-'C)-'

(A - CD-'B)-'(I1, -CD- 1 )

(D - BA- 1C)-'(-BA-1 ,12 )

0

K.3.2 Complex Matrix Inversion Lemmas

Matrix inversion lemmas are frequently encountered in applied time series

analysis. They are particularly useful when formulating Kalman filter algo-

rithms. They are included here for the sake of completeness within the subject

of complex matrix theory for acoustic signal processing.

Lemma 36 Let A and B be n x n nonsingular complex matrices. Let Y be

an m x m nonsingular complex matrix. Let X be an m x n complex matrix.
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Then the two following expressions imply each other. If one is true, then the

other is true provided the necessary matrix inverses exist.

A-' = B-' + XHY-lX A = B - BXH(XBXH + Y)-'XB

Proof. This proof follows Sinha and Kuszta's [2461 proof for the case of

real variables. Let

1 Let A-' = B- + XHy-1X

2 1= A-'-B-1=XHY-IX

3 1 =v AA-IBXH = A(B-' + XHY-1X)BXH

4 3 BXH = AXH + AXHY-1XBXH

5 4 BXH = AXH Y-l(Y + XBX1 )

6 5 = BXH(Y + XBXH)-'XB

= AXHY-l(Y + XBXH)(Y + XBXH)-IXB = AXHY-1XB

7 6 B - BXH(y + XBXH)-IXB = B - A XHY-IX B
A-1-_B-1

= B- A(A•'- B-')B = B- B + A = A

8 A = B - BXH(XBXH + Y)-'XB

0

Lemma 37 Let A and B be n x n nonsingular complex matrices. Let Y be

an m x m nonsingular complex matrix. Let X be an rn x n complex matrix.

Then the two following expressions imply each other. If one is true, then the

other is true provided the necessary matrix inverses exist.

A-' = B-' - X My-IX <= A = B + BXH(Y - XBXHy)-IXB
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Proof. This proof follows Sinha and Kuszta's [246] proof for the case of

real variables. Let

1 Let A-' = B- 1 -XHY-1X

2 1=: A- 1 -B-1= XHy-lx

B- 1 - A- 1 = XHY-X

3 1 =1 AA-IBXH - A(B- 1 - XHy-lX)BXH

4 3 : BXH - AXH - AXHY-lXBXH

5 4 :• BXH = AXHY-(Y - XBXH)

6 5 > BXH(y - XBXH)-IXB

= AXHY-l(y - XBXH)(y - XBXH)-1 XB = AXHY- 1 XB

7 6 =* B + BXH(Y - XBXH)-lXB= B + A XHY 1 X B

B-1_A-1

B + A(B-T - A- 1)B = B + A- B = A

8 A = B + BXH(Y - XBXH)-IXB

0

Lemma 38 Let A and B be n x n nonsingular complex matrices. Let X be an

n x m complex matrix such that (I- XHBX)-1 exists. Then the two following

expressions imply each other. If one is true, then the other is true provided

the necessary matrix inverses exist.

A-' = B-1 - XXH €* A = B + BX(I - XHBX)-lXHB
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Proof. Let A- 1 = B- 1 - XXH. Post-multiply by BX and premultiply by

A to get

AA- 1 BX = AB-'BX - AXXHBX

This implies

BX = AX - AXXHBX = AX(I - XHBX)

Post-multiply by (I - XHBX)-IXHB to get

BX(I - XHBX)-IXHB = AXXHB

Add B to both sides to get

B + BX(I - XHBX)-IXHB = B + AXXHB

Rearranging the initial equation, XXH = B 1 - A 1 implies

B+BX(I-XHBX)-lXHB = B+A(B-1-A-1 )B = B+AB-'B-AA-B = A

01

Lemma 39 Let A and B be n x n nonsingular complex matrices. Let X be an

n x m complex matrix such that (I - XBXH)-I exists. Then the two following

expressions imply each other. If one is true, then the other is true provided

the necessary matrix inverses exist.

A` = B- 1 + XXH 4* A = B - BX(I + XHBX)-IXHB
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Proof. Let A-` = B-` + XXH. Post-multiply by BX and premultiply by

A to get

AA-'BX = AB-'BX + AXXHBX

This implies

BX = AX + AXXHBX = AX(I + XHBX)

Post-multiply by (I + XHBX)-lXHB to get

BX(I + XHBX)-IXHB = AXXHB

Add B to both sides to get

B + BX(I + XHBX)-IXHB = B + AXXHB

Rearranging the initial equation, XXH = B-1 - A-' implies

B + BX(I - XHBX)-lXHB = B + A(A- - B-l)B = B + B - A =2B - A

Solve for A to get the final answer. 0

Lemma 40 Let WH - W > 0 be partitioned in CPxP as

yHy YH~Z

W =xI I×(p-l) =(Y, Z)H(Y, Z)
ZHY ZHZ pxk kxp
(,-t)Xt (P-t)×(P-t)

where Y E Ck×x. Z is a column vector. Then W" E W-' is given by

le,"+( 
yH y)- 1y H Z2

Wii = eif (yHY -yY)-1ei +
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where ei is the standard basis vector of length I consisting of all zeros, except

a 1 in position i. This is often used in deriving Kalman filters.

Proof. Let

and

W-1 =(17

By lemma 34, R-1 = A - BHD-IB. By lemma 37,

R = A- 1 + A-BH(D - BA-'BH)-1BA-1

(yHy)-I + (yHy)-lyHZ(ZHZ _ ZHy(yHy)-lyHZ)-IZHy(yHy)-l

= (yHy)-i + (yHy)-lyHZ[ZH{I _ y(yHy)-1yH}Z]-,ZHy(yHy)-1

Since Z is a column vector,

R = (yHyyl + (yHy)-IyHZZHy(yHy)-1
ZH{I - y(yHY)-IYH}Z

The (i, i)th element of R is en Rei, given by

eiff (yHy)-IYH ZZ~y(yHy)-I e,
Wii eHf(YHY)-le, + t

i ~ZH{II-Y(YllY)1IYH}Z

_ Ie (yH17)-yHZI2

ZH0I - y(yHy)-1yH}Z
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Lemma 41 Let WH = W > 0 be partitioned in CPxP as

yHy yHZ
W= = (Y,Z)H(Y,Z)

ZHy ZHZ

where Y E Ck"l. Z is a column vector. Then Wpp E W-' is given by

Wpp -
ZH{I - Y(YHY)-IYH}Z

This is often used in deriving Kalman filters.

Proof. Let

and

w1( R 17)
By lemma 34, U-' = D - BA-lBH. Thus,

U = [ZHZ - ZHY(YHY)-IYfZ]-I = [ZH(I- y(yHy)-IyH)ZI-I

The (j,j)th element of U is given by

Ujj = eHUej = ey[ZH(I - y(yHy)-lyH)ZI-le,

1Wjj =I
ZH{I - y(yHy)-IYH}Z

with ej as the standard basis vector of all zeros, except for a 1 is position j. 0
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K.4 Determinants

K.4.1 Basic Properties

Definition 78 Let X E C"' have elements (Xij). The matrix formed by

deleting row i and column j from X is called the minor of Xj.

Definition 79 Let A E C"nx have elements (aij). Let Xj be the minor of aij.

Then

Aij - (-1)'+j det(Xij)

is the cofactor of aij. Note that the cofactor is a scalar.

Proposition 55 Let A E Cnxn have elements (aij) and cofactors (aij). Then

n n
Z aikaik = 0. Similarly, E akiaki = 0. This is Ayres problem 3.10 [35].

k=l k=1

Proof. This is essentially the proof given by Ayres, with statements made

n

slightly more explicit. E akikj is the determinant of some matrix. Call it
k=1

B. For example, let XT E C( . Then

all a 12 • alj- 1 x, al,j+l aln

n a 2 1 a 2 2  a 2,j- 1 X2 a 2 ,j+ 2  • 2n

det B = E Xkakj def
k=1

an, ani1'' anj-1 Xn an~j+n ""ann

Substituting aki for Xk, we get

det B = akickj
k=1
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Sall a12 '- ali " alij-1 ali alj-j- '' aln

a 2 1 a 2 2 •.. a 2 i a 2,J_ 1 a 2 i a 2 ,j+l a2n
= det

an, an2 ani anj- ani anj+ • ann

B now has two identical columns, when i 6 j. We know because of this

condition that its determinant is zero. (However, when X is not a linear

n
combination of the columns of A, then det B = E Xkakj is not necessarily

k=1

zero, but rather is the determinant of a brand new matrix.] A similar proof

applies for the row expansion case.O

Proposition 56 A(adj A) = det(A)I, for A E C"'. This is Ayres equation

6.2 [35]. When A- 1 exists, then A- 1 =adiA

Proof. This proof is an expansion of Ayres' proof. This was motivated by

wondering if

adj A = [(-1)'+j det(Xij)]I

or

adj A = [(-1)'+j det(Xij)]H

where Xij is the minor of aij for A = (aij).

Let

adj A = [(-1)"i det(Xij)]T = (C, )T
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where ai is the cofactor of aij. Then examine the product

all a 1 2 • an all a 21  . nl

a 21 a22 a2n a 1 2 a22 " n2

A(adj A) =

an, an2 ann ln a 2n . ann

n n n1

F alkalk E alka2k "" E alk,,,
k=l k=l k=l

n n n

E a2kalk E a2ka2k ... E aknk
k=- k=l k=l

n n* n

F_ ankak E ankc2k ""E ankn
k=l k=l k=l

n

Recall that we proved earlier that E aikaik = 0 for i $ j. Thus
k= A

det A

det A

A(adj A) = = In det A

det A

Further, when A- 1 exists then

A- 1 A adj(A) A-'In det(A)

which implies

A` 1  adjA

det A

Therefore

adj A = [(-1)'+J det(Xij)I T
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works! 0

Proposition 57 [det(A)]- = det(A-').

Proof. det(AB) = det(A) det(B). Let B = A- 1 . Therefore

det(AA- 1 ) = det(I) = 1 = det(A) det(A-')

This implies [det(A)I-1 = det(A- 1). 0

Lemma 42 det(A*) = (det A)*.

Proof. A* = (a'!.). By definition of the determinant,

det(A*)= (sgn0o)alo*, a *2"2. ,

CESn

where S, is the set of all permutations of the ordered set (1, 2,-. , n). Therefore

a takes on n! different permutations from the form

1 2 3 ... n

Ol0'2 Or3 O7r

Then

det(A*) =(Z(sgn o~ajla2G2 .. (det A)*

Note that

S+1, if a is an even permutation of (1,2,... ,n)
sgn0 or

-1, if a is an odd permutation of (1, 2,.. , n)

0]
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Proposition 58 det(AH) = (det A)* = (det A)H.

Proof.

det(AH) = det[(A*)T] = det(A*) = (det A)* = (det A)H

since det(A) is a scalar and is thus equal to its transpose. 0

Lemma 43 Let A be a unitary complex n x n matrix. Then det(A) = eie for

some 0 E R.

Proof. If A is unitary, then AH = A-'. Thus AHA = I.

det(AHA) = det(l) = 1 = det(AH) det(A) = Idet Al2 = 1

Therefore det A = e"0 for some 0 E R. 03

Lemma 44 Let A be an orthonormal complex matrix where ATA = I. Then

det A = ±1.

Proof. If A is orthonormal, then ATA = I and hence AT = A-'. Then

det(AT A) = det I = 1 = (det AT)(det A) = (det A) 2 = 1

Then det A = ±1. 0

Proposition 59 If A is a skew-Hermitian matrix, then [I + A][I - A]-' is

unitary. This comes from Littlewood (p. 19) [167].
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Proof. I have supplied the following proof. Let AH = -A. Note that

(I- A)(I+A)= I-A 2 =(I+A)(I-A)

Then

[(I + A)(I - A) 1-]H. [(I + A)(I- A)-']

= (I - A)-H(I + A)H(I + A)(I - A)-'

= (I - A)-H(I - A)(I + A)(I - A)-'

= (I - A)-H(I + A)(I - A)(I - A)-'

(I - A)-H(I + A) = [(I + A)H(I- a)-l]H

= [(I - A)(I - A) -1H = IH = I

Therefore (I - A)(I - A)-' is unitary. E0

Proposition 60 If B is unitary and -1 is not a characteristic root of B, then

there exists skew-Hermitian matrix A such that

B = [I + A][I- A]-'

This comes from Littlewood (p. 19) [167].

Proof. I supplied the following proof. B is unitary implies BBH = I. Let

B = (I + A)(I - A)-'. First, show that -1 is not reasonable as an eigenvalue

of such a B.

det[(I + A)(I - A)-' - A2II = 0 = det{[(I + A) - A2(j - A)I(I- A)-').
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Assume det[(I - A)-'] 0 0. Then

det[(I + A) - A2 (I - A)] = 0

=det[(1 + A2)A + (1 - A2 )I] 54 0

Let A2 = -1. Then det[2I] = 2m 0 0 where rank(I) = m.This contradicts

det[B - A2 1j = 0, so A2 5 -1.

Ncw, consider BBH = I, which implies det(BBH) = 1 or det B =e- .

det[(I + A)(I - A)-'{(I + A)(I - A)-'}H] = 1

= det[(I + A)(I - A)-(I- A)-1 (I + A)1 'J

= [det(I + A)][det(I - A)]-'[det(I - A )H]-1 [det(I + A)H]

This implies

[det(I + A)] [det(I + A)"] = [det(I - A)][det(I - A)H]

which in turn implies

[det(I + A)(I + A)H] = [det(I - A)(I - A)HI

=det(I + A + AH + AAH) - det(I - A - AH + AAH)

This is true when AH = -A. 0
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K.4.2 Partitioned Matrix Determinants

Lemma 45 Let B be a complex square matrix partitioned as

Bi1 B 12 N

B21 B 22

and let B- 1 exist. Then

det(B) = det(BI 1) det(B22 - B 21 Bj7I 1B12)

This is a complexification of Graybill (p. 184) theorem 8.2.1(3) [95].

Proof. I provided the following derivation based on Graybill's derivation

of lemma 46. Since 1 = det(B11)det(B-1j), we can write

det(B) = det(B'1) det(B) det(Bii)

Note for any matrix of the form

A=,A 0

A~IA2 I

and

0 C,

that by expanding the determinant of A along the right-most column repeat-

edly (or by the left columns of C) we get

det(A) = det(Al) and det(C) = det(Cl)
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Thus

det(Bj1) det(B) = det = det(A) det(B)
-B 21B- 1 I B21 B22

Since A and B are conformable, det(A) det(B) = det(AB). Therefore

• I Bj0I B12

ddet
-B21+ B21 B 22 - B2 1B1lIB12

I B-IB12
= det(B2 2 - B21Bl1B12)

0 B22 - B21 B-i1B12

Finally,

det(B) = det(B-1) det(B) det(B11 ) = det(Bil) det(B 22 - B21B51B12)

Since determinants are polynomials, they commute. 0

Lemma 46 Let B be a complex square matrix partitioned as

B( l B12

B21 B 22

and let B-1 exist. Then

det(B) = do., (B22) dot(BI, - B 12B'02 12)

This is a complexification of Graybill (p. 184) Iheorem 8.2.1(2) [95].
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Proof. This derivation is taken from Graybill.

det(B) = det(B 22) det(B) det(Bý1 )

Then

det(B) det(Bj 1 ) = det B1 , B 1 2  det [ 0

B 21 B 22  - Bý1B 21 B 12J

= e ~(B 11 B12  1 (0~
B21 B 22  -Bi2 IB 21 B21

[B 1 , - BU2Bý1 B 21 B2BV=detI

B 21 - B 22 B221B 2 1 B 22B 12J

B1 l - B 12 Bý2B2 1  B 1 2 Bj2'1
= det = det(Bx, - BU1 2

1 B21)

0 1]

Therefore

det(B) = det(B 22) det(Bn, - B 12B21 B 21 )

0

Proposition 61 Let A, B, and I be n x n matrices. Then

det =det(A - B)

B I

Proof. This is a simple application of lemma 46.

det = det(I) det(A - II- 1 B) = det(A - B)

B I

0]
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Proposition 62 Let A, B, and I be n x n matrices. Then

det =det(A - B)

Proof. By lemma 46,

det = det(I) det(A - BI-'I) = det(A - B)

0

Proposition 63 Let A and B be square matrices, not necessarily the same

size. Then

det = det(A) det(B)
0 B

Proof. By lemma 46,

det = det(A) det(B - OA- 1 0) = det(A) det(B)
0 B

K.4.3 Other Determinants

Lemma 47 Let A E Cnx' and B E Cm'n~. Then

det(Il + AB) = det(Im + BA)

This is Eaton's proposition 1.35 (p. 43) [74].
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Proof. Apply lemma 45 and lemma 46 to

I,, - A

Then

det I 11 = det(In) det[Im - BI,71 (-A)] = det(Im + BA)
B Im

= det(Im) det[I,, - (-A)I•1 B] = det(In + AB)

Therefore

det(Im + BA) = det(In + AB)

0

Lemma 48 Let a, e E C and let matrices B, C, D be such that BCD E Ckxk

and CDB E Cnxn. Then

(!BCD - e _k) det (CDB - am)

This is a corollary to Eaton's lemma 1.35 [74], supplied by me.

Proof. This is a simple application of lemma 45 and lemma 46.

det al, CD det(aIn) det(elk - B 1 In1 CD)

B elk

= det(eIk) det(aIn - CD I1'B)e
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This implies

a' det(eIk - 1-BCD) = ek det(aIn - ICDB)
a e

From this we get

(-1)'an det(- IBCD - elk) = (-1)nek det(1CDB - aI)
a e

We finally get

det( I BCD - eIk) = (- 1 )f-lk det( 1 CDB - aIn)
a an e

03

Proposition 64 Let Ekk > 0, Xkxn. Then det(XXT -- A2 1n) = 0 implies that

det(X TF-X - A2 In) = 0

This is a corollary to Eaton's lemma 1.35 [74], supplied by me.

Proof. This is a simple application of lemma 45 and lemma 46.

det(XX T - AF 2 kk) = det[(xx T -1 - AIk)E]

- det(XX T ' - A2Ik)det(r2)

= (-1)n-kA2k det(A-2X T r-,X - In) det(r)

by lemma 48. This equals

(-1)n-kA2(k-l) det(X TE- X - A2l) det(Z)
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By our hypothesis, this is zero. If we assume that A2 0 0 and E > 0, then we

conclude that

det(X"F'"-X - A2I") = 0

0

Lemma 49 Let

B D

be a partitioned square matrix such that A-' exists. Then

[A0I, C0I,

det = det [A CfIp (detA C

B®Ip D®Ip B D B D

This was supplied by me.

Proof.

det 0pC p

B0Ip DoIp

= det(A 0 Ip) det[D 0 Ip - (B 0 Ip)(A 0 Ip)-'(C 0 Ip)]

= det(A 0 Ip) det[D 0 Ip - (B 0 Ip)(A-1 0 4p)(C 0 Ip)]

= det(A 0 1.) det[D 0 Ip - (BA-' 0 Ip)(C 0 Ip)]

= det(A 9 Ip) det[D 0 Ip - (BA-'C) 0 4p)]

= det(A 0 4p) det[(D - BA-'C) 0 Ip)]

= [det AmP(det(D - BA-'C)]P = [det(A) det(D - BA-'C)]P
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P

A C A C
det det (9 IP

B D B D

Note that even though the determinants are equal, the matrices are not

equal.

AOIp COIp A C IP
BOIp DOIp B D

Proposition 65 Let A be a square matrix. Then

det(I + A') = Idet(I + iA) 12

Proof.

det(I + A 2) = det[(I + iA)(I - iA)j

det(I + Z'A) det(I - iA) = Idet(I + iA) 12

0
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Appendix L

GRAM-SCHMIDT

We examine two Gram-Schmidt algorithms which give different results in the

complex case. A discovery from this exercise is that it is possible via Gram-

Schmidt to produce an orthonormal basis for a vector space without having the

property of an inner product space. The first algorithm will examine the case

where we use the bilinear operator < x, y >= xHy which is an inner product

operator. The second algorithm will examine the bilinear operator (x, y) = xTy

with does, indeed, produce an orthonormal basis, but this operator is not an

inner product. The two orthonormal sets produced are generally not the same.

The basic algorithm is given as problems 5.1.10 and 5.1.11 of Stewart [259].

L.1 Algorithm Using < x, y >= xH y

The following proof is set in general Hilbert space H, which is a complete inner

product space. In our application, we define our inner product as < x, y >=

xffy where x and y are vectors, which may be complex.

Let {x,,}N=1 be a set of linearly independent elements (vectors) in Hilbert

space H. Define the inner product using the engineering convention that the

inner product is linear in the second argument. For example,

< Xay >- a < x,y >
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This is the reverse of the usual mathematician's convention, but is of greater

practical use.

The following Gram-Schmidt orthonormalization process operates on {X,,}=1

to produce the orthonormal set {u,} =1 which has the same span as {Xn}N

The algorithm is as follows.

L.1.1 Inner Product Gram-Schmidt Algorithm

1 Let v, = x,

2 Let u, = -- Ilvill =< vi,vl > 1/2E R+

n-1
3 Let v,n = Xn - <Xn, ui > ui

i=1

4 Let Un = ' IIv,,ln =< vn,vn >1/2E R+

Repeat steps 3 and 4 for 2 < n < N.

L.1.2 Inner Product Gram-Schmidt Algorithm Proof

First, show

< U2, U >= 0(L.1)

< U2,U >= ( 1' I V -= 11 - (v 2 ,vI) = c21 (v2 ,vI)
(11V211 < X -II IJV21 1 Ilvll >

-C 21 < X 2 - < X2, U1 > U 1 , X 1 >

-C21 f{(X2, XI) - (X2, ui) (Ul, XI)I

C21 (X2, XI)- K(X2, -i, ) , , X
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Recall that

VI_ X1
U1 =

-C21 {(X2,X1) - X2 XI (IvXI) C2]T2,X1 (2,XI
= 21 112 (x2,x ,)(x ix i) = c ,1 , - ( x2 )} =V0

Therefore < u 2, uI >= 0.

Now, show

< u1 ,u1 >= 1 (L.2)

I1, i 
I>

For i,j < n - 1, assume < ui, uj >= Then

< UT hj >= <n _ >X0,Ui) Ui UjTj~njj iE=1

i-1

I~vnI I {< xn,Uj > - (Xn, uj) =o

Thus < u,,, us >= O.

Now, show

< un, un >= 1 (L.3)

< U n, ,. > = ( 1 , 1 ' 1 , 1 =n 1

Therefore by induction, the algorithm produces an orthonormal set {un} for

all n E Z. For the inner product, we see that the orthonormal set is unitary

also.
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L.2 Algorithm Using (x, y) = xTy.

The Gram-Schmidt process applied to a complex vector space Cn usually

involves using the inner product. However, the inner product is not the only

function of the two vectors that will produce a decomposition. For example,

define (x, y) = xTy where x, y E Cn. (x, y) does not define an inner product.

We cannot assert that (x, x) > 0 for all x E C'. However, the function (x, y) =

xTy can successfully be used in the Gram-Schmidt process to produce an

orthonormal basis. In fact, let (x, y) be any operator such that

(ax,y) = a(x, y) = (x, ay)

(X +y,z) = (X,z) +(y,z)

where x, y, z E Cn and a E C. The algorithm is the "same" as before.

L.2.1 Bilinear Gram-Schmidt Algorithm

Let {x,}n be a set of linearly independent vectors in Cn. The algorithm is as

follows.

1 Let v1 = x 1

2 LetUl=-'1 (vi,v) 1/ E C(vx ,v1 )I /2

k-I
3 Let vk=xk-- <Xk, ti>u

4 Let Uk = ) (vk, vk)1/ 2 E C

Repeat steps 3 and 4 for 2 < k < n.
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L.2.2 Proof

The proof closely follows the one using the inner product. First, show

(u 2, uI) = O (L.4)

(u 2 ,uI) = (V(, 2 )1,2' (Vt•I )1/2)

1
Gt~ tv)y/ 2(V,2, V,)=2 ( , •

(V2 , V 2 )1/2( V, Zl2 )1/2

= c21 (x 2 (X2, u1 )ul, X) = c21 {(X 2 , x) - (x 2,ui)(ui,xI)}

=C21 {(X2 ,XI) -(X 2' (V1, 1,1)1/2) ( t1J)1/21xi)

Recall that

Ul - ()'v )/ (VI, 1,1)1/2

Then we obtain

(112, 1) = (X2, x,) X ,,, ).'-,-, (xi, ,X

= c2 1 {(X2 , X) - (X 2,XI)} = 0

Therefore

(u2, u1 ) = 0 (L.5)

Now, show (it ,u,) = 1.

( VI,(V,, ),/2' (,1, 1,, 1,/2 , ) I/ 1v=
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For i,j < n - 1, assume

( u . u j ) = b j 0, 5 4 j

Then i (X n-1
(un, u2 ) = v,)1/ 2  - , (xn, u,)u, ,U

(vn,vn)u/2 (X.,. 3 )- (-i

1

(v,, v.) 1/ 2 {(Xn' ,j) -(Xn,u 3 )} = 0

Thus (u,, uj) = 0 when j 5 n.

Now, show

(un, un) = 1 (L.6)

(U~,,Un) Vn ((f)1/2' (V,V )1/2)
(tin Ur) : Vn, 112 (Vn, 1V2,

Therefore by induction, the algorithm produces an orthonormal set {Un} for

all n E Z+. Compared to the previous Gram-Schmidt algorithm, note that

< Vk, Vk >1/2# (vk, Vk)1/2 (L.7)

Thus the two orthonormal sets are not generally the same.
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Appendix M

COMPLEX MATRIX DECOMPOSITIONS

AND EIGENVALUES

This contains various decompositions of complex matrices. Most decompo-

sitions are related to the eigenvalue decomposition of an Hermitian positive

definite matrix. Also included are some decompositions of triangular and rect-

angular matrices. Some of the proofs are given as algorithms or constructions.

There are also a number of theorems that describe or exploit properties of

eigenvalues.

Most of the theorems are straight-forward adaptations of similar theorems

for the case of real matrices. In generalizing, special attention is required when

the real case specifies uniqueness to ±1. In the complex case, this sometimes

will generalize to e" for arbiLrary 0 E R. Distinction is also required between

symmetric and Hermitian complex matrices. It is shown, for example, that

you cannot assume a symmetric complex matrix is a definite matrix, or even

that its cigenvalues are all real. Recall that the present literature about zonal

polynomials for complex matrices assume complex symmetric matrices.

The decompositions are needed to support the work on Jacobians and the

development of distributional results.
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M.1 Decomposition to a Product of a Trian-

gular Matrix

Proposition 66 Let T be an n x n complex upper triangular matrix with

distinct diagonal elements. Let A2 = diag(TI1,..., TNN). Then there exists a

nonsingular upper triangular matrix C satisfying CT = A2C. C is uniquely

determined up to a (possibly different) multiplicative constant for each row.

Row k of C is the left eigenvector of T corresponding to eigenvalue A2. This

is a complexification of Takemura lemma 3.1.1 (p. 17)[265], stated without

proof.

Proof. The expansion of the identity is CT =

n

CIITII CIT1]2 +C12 T22 C11T 13+C 12T23 +C 1 3T3 .. " F- CIkTkn
k=1

71

0 C22T22  C22T23 + C23T3 ... Z ClkTkn
k=2

n

0 0 C 33 T33 ... E ClkTkn
k=3

0 0 0 CnnT,,

A 2CI A2C'12 A2C 13 ... AC2

0 A2C 22 A2C 23 ... AC2"

A2C= 0 0 A2C .

0 0 0 .

A2 C | |
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Table M.1. CT = D 2C Decomposition Pseudo-Code

C Increment by rows

DO a J=I,N-l

C Increment by columns

..DO /3 M=J+1,N

C Compute CJM

.... SUM=0.0

S.... DO 7 K=I,M-1

" ...... SUM=SUM+C(J,K)*T(K,M)

S.... C(J,M)=SUM/(T(J,J)-T(M,M))

a ..CONTINUE

By construction, A) = Tkk for 1 < k < n. Each row of C may be determined

independently from all other rows. The algorithm is given in table M.1

This computes
m-I

E CJKTKM
CjM __ k=1

TCj - TMM

for 1 < J < N - I and J + 1 < M < N, where we used A = Tjj in the

derivation. The values of Ci. are arbitrary, and Cjj is independent of CKK for

J jA K. For a fixed diagonal of C, the other entries of C are unique. The {Cjj}

r: ;ýy be chosen to minimize numerical error in computations. Alternately, the

".mputations may be slightly simplified by arbitrarily setting Cjj = I for all
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J.o0

Lemma 50 Let T be an n x n complex upper triangular matrix with distinct

diagonal elements. Let

A2 = diag(Tn,. -,n)

Then there exists a nonsingular upper triangular matrix C satisfying CT =

CA2. C is uniquely determined up to a (possibly different) multiplicative con-

stant for each column. Column k of C is the right eigenvector of T correspond-

ing to eigenvalue A2. This is a corollary to the complexification of Takemura

lemma 3.1.1 [265].

Proof. Examine the structure of the following matrices.

CIIA 2 C12A 2 C13 ,\2 ... CnA

o C22A. . 2  2 ...

A2C o o o c...A2

o o 0 Cn
We also have TC =

n

T11 C11  TIIC 12 + T12C22 T11C13 + T12C23 + T13C3 ... Z TkCk,
k=1

n

0 T22C2 2  T22C23 + T23C3 ... E TkCkn
k=2

n

0 0 T3C3 ... E T 3 kCk.
k=3

0 0 0 TnnC.
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Table M.2. CT = CD 2 Decomposition Pseudo-Code

C Increment by columns

DO a M=2,N

C Increment by rows

..DO 0 J=M-1,I,-1

C Compute CJM

.... SUM=0.0

.... DOy K=J+I,M

...... SUM=SUM+T(J,K)*C(K,M)

S.... C (J,M) =SUM/ (T(M,M)-T(J,J))

a ..CONTINUE

By construction, A 2 = Tkk for 1 < k < n and the values of CKK are arbitrary.

Construction of CjK proceeds one column at a time from left to right, working

from the diagonal to the top row. The algorithm is given in table M.2.

This computes

STJKCKM
CJM = k=J+1

TMM - TjJ

for 2 < M <5 N and M - 1 > J > 1. The values of Cjj are arbitrary, and Cjj

is independent of CKK for J 0 K. For a fixed diagonal of C, the other entries

of C are unique.

Proposition 67 Let A be an m x n complex matrix. Then there exists an
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upper n x n triangular matrix T having positive real elements on the diagonal,

and a subunitary m x n matrix S such that s S' = In, and A = ST. This is C.

R. Rao equation lb.2(ix) [213]. This is one version of a QR decomposition.

Proof. This proof is by C. R. Rao. Let (a,,", ,an) be the columns of A.

Let (al, .-. , a,) be the columns of S. Let (I i,... , tii) be tthe nonzero elements

of the ith column of T. Then we have

t11  t12 "' tn

t22 "" t2n
(a,, a2 ,.1 ,an) = (O,, •,2, 1 )

tnn

= (alIt I,alt1 2 + a 2t 2 2•, Oa]tI + 02t2,n + + Utn)

From this, we see

a, = 471 tl 1 , a 2 = aot 1 2 + 0"2t 22,1 • = Oal ti + o 2 t 2 i + + 'itii

for 1 < i < n. Let oeioaj = bij. Then yaj = tij fori j, and

ht2i m t2li i t2

which implies

t,, I•, , 12i _ 12i . .. t2 I 'ij /2
Iii i i-li
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beginning with a,, then S and T are constructed as follows.

tll = [a{Hal]1/2

01 = t1•

t1 H1a

t22= [a•2Ha2 - t221/2

212

O2 = - alt12]

tij = aojJ,i E [1,j - 1] E N

tjj= [Oalj - t2. - t2. "-.-t2 , ] 1/ 2  j E [2,n] E N

0j = -L[aj - cTlt 1j - a 2t 2i . -

Thus we have constructed the required S and T such that A = ST, T is n x n

upper triangular with a positive real diagonal, and SHS = I". 0

Proposition 68 Let A be an m x n complex matrix. Then there exists a

subunitary matrix S of size m x n, where sHS = I , an n x n nonsingular

upper triangular matrix C, and a diagonal matrix A2 such that AC = SCA2

or A = SCA2C- 1.

Proof. By C. R. Rao equation lb.2(ix) [213], we obtain an mrx n subunitary

matrix S where SHS = In, and an upper n x n triangular matrix T with

positive real diagonal elements such that A = ST. By lemma 50, we have a

nonsingular upper triangular matrix C satisfying TC = CA2, where column
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k of C is the right eigenvector of T corresponding to eigenvalue A'. Thus

AC = STC = SCA2 . 0]

Proposition 69 Let A be an m x n complex matrix. Then there exists an

upper triangular m x m matrix T having positive real elements on the diagonal,

and a subunitary m x n matrix S such that SSH = I- and A = TS. This is

motivated by C. R. Rao equation lb.2(ix) [213]. This is a version of a QR

decomposition, except that the orthonormal basis matrix is now on the right

side, and it is the set of rows of S that form the basis.

Proof. I have followed the proof is almost exactly as C. R. Rao's proof in

proposition 67. Let (a,, " ,am) be the rows of A. Let (o-1 ,-'m) be the

rows of S. Let (t 1i,'"-, tim) be the ith row of T. Then we have

al t1  t 12  tim Ul

012 t22 
t
2m a2

am t nm am
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Thus, we see that the rows of A are

cfm= tmmO'm

Oim-1 =- tml,m-lm l O'm1 + tml,mOm

fi = tiiai + tii+lOi+l + + t imorm

a, = t 11 0 1 + t 12o 2 + + tpmam

The proof is by construction. We constrain the construction by requiring

H% = f 1, for i=j
I 0, for ij

Given this constraint, we construct the T that satisfies A = TS, and in the

process we also explicitly find S. To begin with, notice that from the expansion

of ai that if we post-multiply by 4•, where i 5 j, we get

ýan = t.iaiOY + ti,+ila+1 lan +"" + t imam H =t..

Also note that

aiai -= (tiiO2 i + tii+1 Oi+a + + timOrm)(tiioli + tii+laOi+1 + + timOam)

t?. + t? t?
ts ti +i + + I3- " " " M

Solving the above for tij and tii we get tij = ajor4 for i 0 j and

tii [aiai - t? . . 2 tm/
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To see that T and S can actually be constructed by decomposing A, we solve

iteratively, as follows. We begin by recalling am =tmm,,am which leads us to

the first step in the iteration.

a.mm m =

1 J1
t mm ama

am-1 =tm-l,m...i~m-l. + tm-j.,m(7m

tm...i'm = am-10 rn

t m-1,m-1 = [am-lan{ -

O'm-i = trn. 1 rn'-1 [am-i - tm-i'mmtl

crm..2 = tm-2,m-20am-2 + tm-2,m-10Om-i + tm-.2,mOlm

tm-2,m H m2r

t m-2,m-1 = Hm2'-

tm-.2,m-2 = [Om...2am2 M-tfl2,m-i trn2,m1

Um-2 1 tm2m (k[m-2 - tm -2,m -1Crm -i - tm -2,m~rm

In general,

ai= tijO'i + ti,i+10'i+l + . + tirntlm

tkaLH, k1m.m- 1,,*+ 1
zm -1,m -2,- -,1

iii laa?' tt? ]i/2
t1  j 1 -+ I ,m

OU: = La - ti,i+i~i+i - t,,morml

Thus, we have constructed T and S where SSH Im and A = TS. 0
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Proposition 70 Let A be an m x n complex matrix. Then there exists a lower

triangular m x rn matrix T having positive real elements on the diagonal, and a

subunitary m x n matrix S such that SS" = I, and A = TS. This is motivated

by C. R. Rao equation lb.2(ix) [213]. This is a form of a QR decomposition,

except that the orthonormal basis is the set of rows of S, and it is on the right

side.

Proof. I have followed the proof almost exactly as C. R. Rao's proof in

proposition 67. Let (as,"' ,aOm) be the rows of A. Let (ao,. ,am) be the

rows of S. Let (t 1i,'", toi) be the ih row of T. Then we have

a2 t 21  t 22  a2

am tml tm2 " " tmm arm

Thus, we see that the rows of A are

a3l -- t1l011

a2 = t 2 1 0) + t 2 2 0`2

ai = tilal + ti,20U2 + "'" ± tiii

a = tmIal + tm2C2 + + tmmam
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Let aiaH = bij. Given this constraint, we get ajaft = tj for 1 < j < i - 1 and

i1 j. Also note that

,,,"=t,? + t'. +. + t?'

where 1 < i < m. Now, solve for tij and tij.

tij = jOrH for i k j

= [,a t2- t1_2

Now, form the algorithm to construct T and S.

tll = H1]1/2

o, 1 a

H= -t21 a O20"lH

t2• ~~ t2 [••-t1/2
t2= [a2a2/ 21

02 = -L[I 2 - t 2 ilo]

tjj = •aja4, 1 < j < i -1

Iii = - tI - t÷2  - 11/2 i=2,3,..-,m

a, = •[ -til - t - 4 2 6r2 . i-li-]

Thus, A = TS where SSH = In and T is lower triangular with positive real

elements on the diagonal. 0]

Proposition 71 Let A be an m x n complex matrix. Then there exists a lower

triangular n x n matrix T having positive real elements on the diagonal, and a
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subunitary m x n matrix S such that SH $, = In and A = ST. This is motivated

by C. R. Rao equation lb.2(ix) [213]. This is a form of a QR decomposition.

Proof. I have followed the proof almost exactly as C. R. Rao's proof in

proposition 67. Let (a,,' ,na) be the columns of A. Let (oa,'. ,-an) be the

columns of S. Let (tii,"', tni) be the nonzero elements of the ith column of T.

Then we have

t~l

t 21  t22
(a,, a 2 , On) = (01 (72, . .

tnl tn 2  tnn

= (a IttI + "'" + antnl, Or2 t 22 + "'" + antn2 ,1" ,,t )

Let a'Oaj = 6ij. Then a•!'a = tj for i 6 j, and

Thst + t2 + + t2n

Thus tij = a~la5 and

[a fl a _ t ? . . . . 2 J ,1 / 2tii t ! -- 1+l,8 "n~
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Now, write the algorithm to construct S and T.

t =

n= an

tn,n_1 = aHn lanI
aH Ia._ II~~/2

tn--1OIn- n

an-1 = n-l,n--1 lan- Untnn-1I

tij = a0fQj, for i j

ti [•H - t2 _t_ 2.]1/2 1< i< n - 1
Si+ l i " "i" tniJ in reverse order

ti= tAi - ii+i+1 ,i  - orntni]

Thus we have found lower triangular T and S subunitary such that A = ST.

0

M.2 Similarity Transformation

Lemma 51 Let B be a nonsingular complex n x n matrix, and let A be any

other complex n x n matrix. Then A and B-1 AB have the same eigenvalues.

Proof.

det(B-1 AB - A2 1) = det(B-'AB - A2B-1 IB)

= det[B-1 (A - A2 1)B] = det(B-1 ) det(A - A2 1) det(B)

= det(A - A21)det(B-'B) = det(A - A21)
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when B is nonsingular. 0

Theorem 112 Let s, t E Fn×n where T is R or C. Let A2(-) be the set of

eigenvalues of its argument. Then

A2(st) = A2(ts)

Proof. I do not have a record of the pedigree of this theorem or its proof.

By similarity transformation, using lemma 51.

A 2 (St) =A 2 (s'1sts) =A2 (tS)

Corollary 32 Let U be a unitary complex n x n matrix, and let A be any

other complex n x n, matrix. Then A and UHAU have the same eigenvalues.

Proof. Although I provided this, it is also common knowledge. It is pro-

vided here for the sake of completeness. U` = UH. Apply theorem 112 and

the result follows immediately. A longer proof follows here.

det(UHAU - A2 I) = det(UHAU - A2uHI j)

- det[U"(A - A2 1)U] = det(U")det(A - A2 1)det(U) = det(A - A2J)

Recall that det(U) = eiO by lemma 43, and

det(I) det(U) = I

0]
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Corollary 33 Let V be an orthonormal complex matrix such that VTV = I,

and let A be any other n x n complex matrix. Then A and VT AV have the

same eigenvalues.

Proof. Although I provided this, it is also common knowledge. It is pro-

vided here for the sake of completeness. V-1 = VT, Apply theorem 112. The

result follows immediately. An alternate proof follows.

det(V T AV - A2I) = det(V T AV - A'2 VTIV)

= det[VT (A - A2 1)V] = det(V T ) det(A - A21) det(V) = det(A - A 2 1)

0

M.3 Transformation to a Triangular Matrix

with the Same Eigenvalues

Lemma 52 Let A E C"'r. Then there exists a unitary matrix U such that

U"AU is an upper triangular matrix whose diagonal elements are the eigen-

values of A. This is a complexification of Muirhead's theorem A9.1 [187].

Proof. This is a complexification of Muirhead's proof. Let A2, .-. -,A 2 be

the eigenvalues of A, and let x, be an eigenvector of A corresponding to A,.

Let X 2,.- •, Xm be any other vectors such that .r-, X,2 , , Xm form a basis for

Cm. Using the inner-product Gram-Schmidt orthonormalization process given
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in section L.1, construct from xI, x 2 ,., X,. an orthonormal basis given as the

columns of the unitary matrix U1, where the first column ul is proportional

to xi, so that ul is also an eigenvector of A corresponding to A2. Then the

first column of AU1 is Aul = A2U 1 , and hence the first column of Uf1 AU1 is

•Uf'Ul. Since this is the first column of A•UfU 1 = )'1Im, it is

0

0

Hence

UHAU B1

0 A2)

where A2 is (m - 1) x (m - 1). By lemma 43, det(Ui) = e". Thus

det(UiHAU, - A2 Im) = det(U H AUt - A,2 UfImUi)

- det(UH) det(A - A 2 Im) det(Ui) = det(A - A 2Im)

=det B (A -A 2 )det(A 2 -A2 I _1)

0 A2-A22-2 I,-_

Since A and UjHAUj have the same eigenvalues, then the eigenvalues of A 2 are

A 2 ... A2M

Now, using a construction similar to that above, we want to find an or-

thonormal (m - 1) x (m - 1) matrix U 2 whose first column is an eigenvector
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of A2 corresponding to A2. Then

U2f A2 U2 =(2B)

where A 3 is (m - 2) x (m - 2) with eigenvalues 3A, .. ,

Repeating this procedure an additional rn - 3 times we now define the

orthonormal matrix

U = U,...
0 U2 0 U3 0 UM,_1

Note that UHAU is upper triangular with diagonal elements equal to )M,- .

0

Lemma 53 Let A E Cmxm. Then there exists an orthonormal matrix V such

that VTAV is an upper triangular matrix whose diagonal elements are the

eigenvalues of A. This is a corollary to a complexification of Muirhead's the-

orem A9.1 [187].

Proof. This is a complexification and adaptation of Muirhead's proof of

his theorem A9.1. Note that even though a transpose is in the problem, this

is still different from the real case.

Let A , A' be the eigenvalues of A, and let x, be an eigenvector of A cor-

responding to A'. Let x 2,"', x,, be any other vectors such that x1 , x2,'-, xm

form a basis for C m . Using the bilinear Gram-Schmidt orthonormalization pro-

cess given in section L.2, construct from xI, x2,..., x an orthonormal basis
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given as the columns of the orthonormal complex matrix V1, where the first

column vi is proportional to xi, so that v, is also an eigenvector of A corre-

sponding to A•. Then the first column of AV, is Av1 = Alv 1, and hence the first

col,,mn of VTAV, is A V vj. Since this is the first column of A, VIT V AI,

it is

A2

I

0

0

Hence

VT A 1 = ( A B 1 )

0 A2)

where A 2 is (m - 1) x (m - 1). By lemma 44, det(VI) = ±1. Thus

det(VITAVI - A2Im) = det(V TAVl - A2 V1 ImV1)

- det(VIT ) det(A - A2 Im) det(VI) = det(A - A2 Im)

-det = (A2 - A2) det(A 2 - A2Imi)
0 A2 - A2Im-1

Since A and V1TAV1 have the same eigenvalues, then the eigenvalues of A2 are

Now, using a construction similar to that above, we want to find an or-

thonormal (m - 1) x (m - 1) matrix V2 whose first column is an eigenvector
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of A2 corresponding to A2. Then

2A2 B2
V2TA 2V 2 = a

where A3 is (m - 2) x (m - 2) with eigenvalues A ,..., A.

Repeating this procedure an additional m - 3 times, we now define the

orthonormal matrix

(1 0)(2 0) (I2 )V = V ...
0 V'2 0 V3 0 V,,,_1

Note that VTAV is upper triangular with diagonal elements equal to A2,...,AX.

VT AV ( 2 0 ... 1 )0 VIT) A VA x

1 0 12 0 T 2 B

0 ) V 0 J( 0 ) (M.

0 V,•_ 1 0 V3T 0 A2 0 V3 0 VM_

Irm-2 0 Im-2 0

0 0 A2 B2 (M.1)
0 V.Tý 0 V'._I

0 0 A3)
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A2 B

0 Am

Note that the nature of the A? was not at issue here. They are not necessar-

ily real. Also, compared to lemma 52, V : U in general, even though the

eigenvalues are the same in both cases. 01

M.4 Functions of Eigenvalues

Theorem 113 Let A be an n x n complex matrix with eigenvalues Al,... , A).

n

Then tr(A) = Z A?. This is a complexification of Graybill theorem 9.1.3 [95].

Proof. By lemma 52, there exists a unitary matrix U such that UHAU is

an upper triangular matrix whose diagonal elements are the eigenvalues of A.

Call it T. By property of the trace function tr(AB) = tr(BA), we see that

n

tr(A) = tr(AI) = tr(AUUH) = tr(UH AU) = tr(T) = A?
it=1

Theorem 114 Let A be an n x n complex matrix with eigenvalues A2,...,-2.

Then
n

det(A) = J A?
i=1
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Proof. By lemma 52, there exists a unitary matrix U such that UHAU is

an upper triangular matrix whose diagonal elements are the eigenvalues of A.

Call it T. By lemma 43, det(U) = e"0. Thus

det(I) = det(UHU) = 1

and

det(A) = det(UH)det(A)det(U) = det(UHAU)

Since U and A are conformable square matrices. Thus

n
det(A) = det(T)= f1 A?

j=l

0

M.5 Eigenvalue Decomposition

Theorem 115 (Very Important). If A is an Hermitian m x m matrix with

eigenvalues A2,.., ), then there exists a unitary matrix U such that

UHAU = D = diag(A2,. .. ,A 2 ) = A2

If U = [U1, , rUm], then U3 is an eigenvector of A corresponding to the

eigenvalue )•. Moreover, if •,...,)n are all distinct, then the representa-

tion UHAU = D is unique up to phase changes in the first row of U. This is

a complexification of Muirhead's theorem A9.2 [187].
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Proof. This is a complexification of Muirhead's proof. From lemma 52,

there exists a unitary matrix U1 such that

UHAU 1=( 1

where A1, ... , Am are the eigenvalues of A2. AH = A implies

(UIHAU,)H = Ul AHU1 = U1HAU1

is also Hermitian. thus, B1 is a zero matrix, B1 = 0. Similarly, each Bi in

the proof of lemma 52 is zero (i - 1, m - 1). Thus, U given in lemma 52

satisfies

UHAU = diag(A,= A

Observe that UUHAU = AU = UA2 . Consequently AUi = UiA? so that Ui is

an eigenvector of A corresponding to the eigenvalue Al.

Now, suppose that we also have QHAQ = D for a unitary matrix Q. Let

P = QHU. Then

PD = (QHU)(UHAU) = QHAU

and

DP = (QHAQ)(QHU) = QHAU

thus PD = DP. If P = (pij), it follows that pijAj = pi,3 A. Since A? :ý Aý by

hypothesis, pi, = 0 for all i $ j. Note that

pHp = UHQQHU = I
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Since P is unitary and diagonal, it must have the form P = diag(eill,..., eiam).

Thus

U = QP = Q diag(el,-.. ., eiO')

Note that when working with A E Rmxm, this last property simplifies to

saying that if A,..., A are all distinct, then the representation UHAU = D

is unique up to sign changes in the first row of U. 0

Caution. Not all eigenvalue decompositions can be written in the form of

A = QA2 QH. The conditions on our theorem requiring A to be Hermitian give

us the form we are familiar with. When A is not Hermitian, we get the form

A = QA 2Q- 1 .

Example. Let

A=( 44)-A)
2 1

Then

and

Thus, the eigenvalues are {2, 31 with associated nonnormalized eigenvectors

C2.
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and

The normalized eigenvectors are

1/5

and ( 1/2
ý1 /2)

Then we observe

S1/ 5 1/2 (2 0" (\115 ý2 /5

ý2/5 ý1 /2) 0 3) 1/2 ý1/2)

2 2,kE2 4 -1

5 2 52

Thus we do not get back A when we compute QA 2QH. However, noting that

we find that A = QA 2Q-'. 0

Theorem 116 Let AT -= A E M,(C) have eigenvalues A2, ... ,•. Then there

exists a matrix V such that VTV = I and

VTAV = D = diag( A,...',) = A2
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If V = [V, -.. , Vm], then Vi is an eigenvector of A corresponding to the

eigenvalue A•. Moreover, if A'...A 2 are all distinct, then the representa-

tion VTAV = D is unique up to sign changes in the first row of V. This is

a corollary to a complexification of Muirhead's very important theorem A9.2

[187].

Proof. This is a complexification of Muirhead's proof of his theorem A9.2.

From lemma 53, there is an orthonormal m x m matrix V1 such that

VITAV ( = I
0 A2

where A, ... , A are the eigenvalues of A2. AT = A implies

(VjTAV )T = VIT AT V = V T AV

Thus B, is a zero matrix. Similarly, each Bi in the proof of lemma 53 is zero

for 1 < i < n - 1. Thus the V of lemma 53 satisfies

VTAV = diag(Al,...., A2) = A2

Now, VTV = I implies VT = V-1, which in turn implies VVT = I. So,

VVT AV = AV = VA 2

Consequently, AVi = ViA, so that Vi is an eigenvector of A corresponding to

the eigenvalue A?. Also, suppose QTAQ = D for QTQ = I. Let P = QTV.

Then

PD = (QTV)(VTAV) = QTAV
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and

DP = (Q T AQ)(Q T V) = Q T AV

Thus PD = DP. Let P = (pij). Then pijA= pijA?. If A? # Aý, then Pi = 0

for all i # j. Note that

pTp = VTQQTV =I

Since P is orthonormal and diagonal,

P = diag(-1, ±1, ±.,+1)

Thus

V = QP = Q diag(±1,-±, -. , 1)

0

M.6 Hermitian Definiteness

Corollary 34 If A is an Hermitian m xm matrix with eigenvalues A2,... A2.

then A? E R for all i E [1, m]. This is a corollary to a complexification of

Muirhead's theorem A9.2 [187]. It is a widely known result.

Proof. From theorem 115, we know there exists unitary U such that

UHAU = A2 = diag(A ,-.. .,A )

Since A = AH, we know

(UH AU)H = UHAU
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Therefore (A2 )" = A2. This can only be true if A? E R for all i.

Note that when AT = A E Mm(C), we have orthonormal V such that

VTAV = A2

A = AT implies that (VTAV)T = VTAV, and tihus (A2)T = A2. However, we

cannot deduce from this condition that A2 E R for any i. This is a fundamental

difference between complex symmetric matrices and Hermitian matrices. This

says you cannot automatically assume definiteness for a complex symmetric

matrix. 03

Theorem 117 The m x m Hermitian matrix A is positive (negative) (semi)-

definite if and only if the matrix

A 2 = diag(A 2,-.. ,A 2

of eigenvalues also is. This is Stewart's corollary 6.5.3 [259].

Proof. Let U and A2 be the matrices of eigenvectors and corresponding

eigenvalues of A. Recall that UHAU = A2 . Let y =Ux for all x E Cm.

A2 is positive (negative) (semi-)definite if and only if UH AU is. xHA 2x > 0

implies x HUH AUx > 0 for all nonzero x in Cm. In turn, this implies yHAy > 0

for all nonzero y in Cm. Since U is nonsingular, y = Ux is a one-to-one

mapping. As x ranges over all Cm, then y also ranges over all Cm. The
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inequality can be any of >, >, <, or < . Thus

'U A2 r > 0 Vx $ 0 in C'n implies y"A2 y > 0 Vy $ 0 in C'

x"AA2.r > 0 Vx $/ 0 in C". implies yHA 2y >_ 0 Vy $ 0 in C m

xHA 2x < 0 Vx -: 0 in C"' implies y"A 2 y < 0 Vy $ 0 in Ctm

x"IA 2 X < 0 Vx $ 0 in C". implies y 1A2 y < 0 Vy $ 0 in C"

Note that XA.r = x 2 A2. This means

.r11A2x > 0 Vx $ 0 in C"' implies A? > 0 Vi

r'lA2X > 0 Vi" $ 0 in, C." implies A? > 0 Vi

.r11A2x <0 VX $( 0 ill C" implies A2 < 0 Vi

.r0 A2x < 0 VX $ 0 in C' implies A? < 0 Vi

0

Theorem 118 The ?n x in main'r A-' is Hermitian positive (negative) defi-

nite if and only if A is Hermnitian positive (negative) definite.

Proof. By theorem 115, let A = UA 2 (U" where A2 = diag(AX, A., )is

the matrix of eigenvalues with corresponding eigenvectors in matrix U. Let

A? = 0 for all i. rhen

A-' = (IIA 2U1 1 )- = 1-1AA- 2U-I

1J is unitary. Thus If` = U1t and If = U"- 1 , which implies A-' = UA- 2 /,

where

A-' = diag( 5,...A A21 71
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Note that - > 0 if and only if A? > 0, and -\2 < 0 if and only if A? < 0.

Therefore, if A? > 0 for all i, then - > 0 for all i. Thus A is Hermitian

positive definite if and only if A-` is Hermitian positive definite. Similarly, A

is Hermitian negative definite if and only if A-` is Hermitian negative definite.

El

M.7 Square Root Decomposition

Theorem 119 (Very Important!) Let A be a non-negative definite complex

m x m matrix. Then there exists a non-negative definite complex m x ?n

matrix, written as A/ 2, such that A = A'1/2 (A1'/ 2 ). There also exists a B 1/2

such that (BI!/2)H(B1/2) = A. These are Hermitian Square Root matrices.

Their existence provides a key to obtaining numerically robust methods such

as in Kalman square root filtering. This is an important complexification of

Muirhead's theorem A9.3 [187]. These are widely known results.

Proof. This is a complexification of Muirhead's proof. Let H be a unitary

matrix such that H1 AH = D, where

D = diag(A', ... , 2

with A ,...A,• being the eigenvalues of A. Since A is nonnegative definite,

A? > 0 for i= 1,...,m.Let

D'I' = diag(Ai,. .. ,) = (DI/ 2)H
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Then Di/ 2 (Di/ 2 )H -- D. Let A/ 2 == HD11 2H H. Then

(A 1/2 )(A/2)H = HD1/2 HH(HD/2/HH)H

= HD1 2 HHH (D1/ 2 )HHH = HDHH = A
I

Therefore (A'/ 2)(A'/ 2)H = A.

Similarly, there exists a B'/ 2 such that (B' 1 2)H(BI/ 2) = A. Let (B'/ 2)H =

A'1/ 2, and the proof is complete. If A is positive definite, then A'1/ 2 is also

positive definite. 0

Theorem 120 Let A be a non-negative definite complex m x m matrix. Then

there exists a non-negative definite complex m x m matrix, written as A'/ 2, such

that A = A"/ 2A"/ 2. This is another complexification of Muirhead's theorem

A9.3 [187]. This is a widely known result.

Proof. This is a complexification of Muirhead's proof. Let H be a unitary

matrix such that HHAH = D, where D = diag(A2,.. -, A2) with A,,---, 2

being the eigenvalues of A. Since A is nonnegative definite, )A > 0 for i =

1,.-,m. Let

D1/2 -= diag(Al,..- ,Am)

Then D'/ 2D'1/ 2 = D. Let A1/2 = HDI/2HH. Then

(AI/2)(Ai/2) = HD'/2 HH(HD'/2HH)

= HD 11 2 II H D1/ 2 HH = HDHH = A

" i ~iI



815

Therefore (A'/ 2 )(Al/ 2 )H = A.

If A is positive definite, then A'/ 2 is also positive definite.

Examining the proof, note that A'/ 2 = (A1/ 2)H. 0]

Theorem 121 Let A be an rn x rn non-negative definite complex matrix of

rank r. Then (i) there is an m x r matrix B of rank r such that A = BBH,

and (ii) there is an m x m nonsingular matrix C such that

A=C :H

0 0

This is a complexification of Muirhead's theorem A9.4.

Proof. This is a complexification of Muirhead's proof. First, we prove (i).

Let D, = diag(A',.. A 2) where ,-... A, are the nonzero eigenvalues of A.

Let H be an m x m unitary matrix such that

HH AH =diag(A2,.-., 2, 0,•_•_, 0)

Partition H as H = [HI, H2], where H, is m x r and H 2 is m x (m - r). Then

A=H HH= [Hi, H2] ) H

= = = HDHn

0 0 0 0 H2

Let D 12 = diag(A, .. ,Ar). Then

H1Dý(D`) HH~ = BBn

where B = HAD'/ 2 is m x r of rank r.
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Now we prove (ii). Let C be an m x m nonsingular matrix whose first r

columns are the columns of B in part (i). Then C = [B, El.

C ( 0 CnH= [B, El (, 0)Bj BBH=A
0 0 0 0 EHt

0

Corollary 35 Let A be an m x m non-negative definite complex matrix of

rank r. Then (i) there is an m x r matrix B of rank r such that A = BH B,

and (ii) there is an m x m nonsingular matrix C such that

A =CH( jC
0 0

This is another complexification of Muirhead's theorem A9.4 [187].

Proof. This is a complexification of Muirhead's proof. First, we prove (i).

Let D1 = diag(A,.. , A 2 ) where A ,2.. , A 2 are the nonzero eigenvalues of A.

Let H be an m x m unitary matrix such that

HAH =diag(A' ., A2, o,-. ,0)

Partition H as H = [H1, H 2], where H1 is m x r and H2 is m x (m - r). Then

A = H HU = [H,,H21 I HDHH

Let D' 12 = diag(Al,..-,A,). Then

A= HD,12 •' 2)"H' = B"B
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where B = (11iD112)" is r x m of rank r.

Now we prove (ii). Let C be an in x in nonsingular matrix whose first r

rows are the rows of B in part (i). T1hen

C =(7

- [B1,"] J= /lP = A
E

0

M.8 Unitary Transformations

Theorem 122 S$upposc that A and B1 ar. complcx matrices where A E Ck",

and 1B E Ckxt, with in < n. Vi'hit AAO = jB8Il if and only if there is anl

Yn x it matrix Ii wi/h 1lI' = /,,, such that All = 11. This is a complezxijication

of Muirhcad's theorem A9.5 [187].

Proof. Tlhis is a complexification of Mlirhl a('s proof. Suippose there is an

in x n rnatrix II with /1111 = I,,, such that All = B. Then

1113" = (Ali)(All)" = AIIlI"A" = AA"
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Now, suppose that AAH = BBH. Let C be a k x k nonsingular matrix

such that

AAH = BBH = C CH

0 0

where rank(AAH) = r. Matrix C exists by theorem 121. Let

D = C- 1 A, E = C-'B (M.2)

and partition these as

[D,

D2

El
E=

E2

where D1 is r x m, D2 is (k - r) x m, E 1 is r x n, and E 2 is (k - r) x n. Then

ElEH E =E2 [H 0
EEH= HI C-EBBH(C-1 )H =

[E2E E 2 E]E1E E2E 0 0

Also

DD 1 H 1  = H(C-I)H =
D2DH D2DH 0 0

This implies E, EH = ID, DDH = I,, E 2 = 0, and D2 = 0. Thus

D=[]
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and

E =[

Let k 2 be an (n - r) x n matrix such that

is an n x n unitary matrix. Let

D, 0
D ,D

where D2 is (n - r) x m, and & 3 is (n - r) x (n - m) such that D is an n x n

unitary matrix. Note that we use D1 , not D1 . Then

E •E

0 0 0 0 ]h[ 0

and

1, 0 1:I[ D, 0] A
[i0r 0 ]0[Ir 2)3 0 0 o ~ 0

Notice that

E =] [ D bbHE (M.3)
0 0 0 0

seD 0 ]s ujni[r .Q (MD4)

since D) is unitary. Define Q = 6H"k
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Examine Q.

Q ~ D HE D E b= 1 = D EE ++!J2

[0 D3, k2jHt

k is unitary which implies I,, = 4. b is unitary implies bbH = I_ LJHb.

Then

(D"HE)(D)H" = = ib - b H b = IH

Therefore Q is unitary.

Let Q be partitioned as

Q= (M.5)
P

where H is m x n and P is (n - m) x m. Then HHH = I, since Q is unitary,

QQH =n]

0 l-

Then

C-=B = E by equation M.2

= [ ]Q by equation M.4

= D 0] by equation M.5

=DH = C-'AH by equation M.2

This implies CC-1B = CC-'AH z B = All which is the result we are

seeking. 0
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Theorem 123 Suppose that A and B are complex matrices where A E cmxk

and B E Cnxk, with m < n. Then AH A = BHB if and only if there exists

some H E Cnxm such that HHH = I,, and B = HA. This is a corollary to a

complexification of Muirhead's theorem A9.5 [187].

Proof. This is a slight modification of a complexification to Muirhead's

proof. Suppose there is some H E Cn' m such that HHH = Im and B = HA.

Then

BHB - (HA)H(HA) = AHHHHA = AHA

Now, suppose AHA B BHB. Let C be a k x k non-singular matrix such

that AHA 
BHB =CH[ 

]

where rank(AHA) = r. C exists, by corollary 35. Let

D = AC-1, E = BC-1 (M.6)

and partition these as D = [DI, D21, E = [El, E21, where D, is m x r, D2 is

m X (k - r), El is n x r, and E 2 is n x (k - r). Then

EHEI EHE 2 J

0 0 0 0
kxk
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Also [nDf'D1 D~riD 2 ] -1-

DD D= D = (AC-I)H(AC-')
DHD1 DHD 2

C-'HAHAC-1= K 1OO

-kxk

This implies EtHE1 =Df D, = I, E2 = 0, and D2 = 0. Thus D = [D1,0] and

E = [E,, 0].

Let k 2 be an n x (n - r) matrix such that E = [EI, E2] is an n x n unitary

matrix. Let

0 b

where D2 is m x (n - r), and 3is (n - m) x (n - r) such that b is an n x n

unitary matrix. Then

0 0 n 0 0

and

0 0, 0 03  0 0 0 0

Notice that

0 0 ,0 0 ,• 0 0

nIk nxk

(M-7)
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since b is unitary and Q = ED1 . We see that

QHQ = (kD")"1(ED1 1 ) = bekHbH = j)bH =

Therefore Q is unitary. Partition Q as

Q = [H, PI (M.8)

where H is n x m and P is n x (n - in). Then H11H = I,,, since Q is unitary

I,n 0
and QHQ= []Then

0 l,-,

BC-' = E by equation M.6

D][l by equations M.7= Q [H, P] HD H

0 0 and M.8

= HAC-' by equation M.6

-- BCC-' = HAC-1 C = B = HA which is the result we want

0

Consider

l T 0 D
V- rx(k-r) mxk

0 0 0
(n-r)xr (n-r)x(k-r) Jnk (n-m)xk nxk

1 0
Note that there are two different matrices of the form One has

0 0

dimensions k x k and the other has dimensions n x k. Dimensions of various

matrices are Q,?xn, Dmxk, and Enxk.
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Theorem 124 Let A be an n x m complex matrix of rank(A) = m where

n > m. Then (i) A can be written as A = H1 B, where H1 is n x m with

HHI H1= Im and B is m x m positive definite, and (ii) A can be written as

lm
A=H B

0

where H is n x n unitary and B is m x m positive definite. This is a com-

plexification of Muirhead's theorem A9.6 [187].

Proof. This is a complexification of Muirhead's proof. (i) Let B be such

that BHB = AHA. This B exists by theorem 119. B is the positive definite

Hermitian square root of (AHA). By theorem 123, A can be written as A =

H1B where H1 is n x m with HHH1 = In.

(ii) Let H1 be the matrix in (i) such that A = H1 B and choose an nx(n-m)

matrix H 2 so that H = [H1, H2] is an n x n unitary matrix. Then

A = HB = [HAH 2] B=H B
0 0

0

Theorem 125 Let A be an n x m complex matrix of rank(A) = n where

m > n. Then (i) A can be written as A = BHj, where H1 is n x m with

HHH1 = I,, and B is n x n positive definite, and (ii) A can be written as

A = B[I,,,O]H where H is m x m. unitary and B is n x n positive definite.

This is a corollary to a complexification of Muirhead's theorem A9.6 [187].
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Proof. This is a modified version of a complexification of Muirhead's proof.

(i) Let B be such that BBH = AAH. This B exists by theorem 119. B is the

positive definite Hermitian square root of (AAH). By theorem 122, there exists

an n x m matrix H, such that HIHII = In and A = BH1 .

(ii) Let H, be the matrix in (i) such that A = BH1 and choose an (m -

n) x m matrix H 2 so that

H[

is an m x m unitary matrix. Then

A = BH, = B[IV, [] = B[I,,,O]H
H2

0

M.9 Cholesky or Bartlett Decomposition

Theorem 126 (Very Important) If A is an m x m positive definite complex

matrix, then there is a unique m x m upper triangular matrix T with positive

diagonal elements such that A = THT. This is known as Cholesky or Bartlett

decomposition (see p. 134)[259]. This is a complexification of Muirhead's

theorem A9.7 [187].

Proof. This is a complexification of Muirhead's proof. We prove it by

induction. When m = 1 and A is positive definite, then A > 0 and there
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exists a T such that A = THT = V'-Av'.

Suppose the result holds for positive definite matrices of size m - 1. Par-

tition the m x m matrix A as

Al z12

A=

A12 A22

where All is (m - 1) x (m - 1). Assume there exists a unique (m - 1) x (m - 1)

upper triangular matrix T11 with positive (therefore real) diagonal elements

such that All = T/HT 11. Suppose

AlA 12 ] TII OH]Tii X]
A= -

AH A22  r yH 0 y

TH T11 T'H

x= Tl [Hx + y2

wherexis(m-1)x×andy E R.ThusaH = x'Tll. Solving for x, agTj11 = xH

which implies x = (T 1 l)Ha12 . Also, a22 = XHX + y2 implies

2 H_ HT--Iy- a 22 -X x - a 22  12 1 (, 11)H12

a 22 - a H(TjTi'Tn)- 1a12 = a22 - aHm-aN

where a12 is a column vector of dimension (m - 1) x 1. Since A is positive

definite, then

a 22 - a" 1 a12 > 0
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The unique y satisfying this is

(a22 H A-1a 1/2 > 0

We have thus found

Tn1 X
T=

-0 y

such that A = T HT. 0

Corollary 36 If A is an m x m positive definite complex matrix, then there

is a unique m x m lower triangular matrix L with positive diagonal elements

such that A = LLH. This is a corollary to a complexification of Muirhead's

theorem A9.7 [187].

Proof. By theorem 126, there is a tnique in x m upper triangular matrix

T with positive diagonal elements such that A = THT. Let L - TH. Then

A = LLO. L is lower triangular. 03

Theorem 127 If A is a comphiix x< m matrix of rankni where ?I > rn, then

A can bI iiniqu ly written as A = l 1' wlu rc I, is n x in with t/'IH, =Il "

arid T is ti x ti uppf r triangular writh po.sitirt real diagonal t in ,its. A'his is

a co(Wph xiiicalion of Muirhlade-i the ore tn 419.8.

Proof. This is a complexilicalion of Nhiiirhead's proof. A.a is posit iVe

(htinit vwith (ljitefsijois In )< ti. liv lhorern 126. 1here i. a unieU en × in upper

I riangular mat rix wit hi posit ive re'al diagonal ehlments such that A" A = T"7.
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By theorem 123, there exists an n x m matrix H1 such that HHH1 =-Im and

A = HIT. Because T is unique, we thus know H, is unique. Since AHA is

m x m and positive definite, rank(T) = m. 0

Corollary 37 If A is a complex m x n matrix where n > m, then A can

be uniquely written as A = LH1 and rank(A) = m where H1 is m x n with

H1 HIH = Im and L is m x m lower triangular with positive real diagonal

elements. This is a corollary to a complexification of Muirhead's theorem

A9.8. This is also Srivastava lemma 1 [256].

Proof. This is a modified complexification of Muirhead's proof. AAH is

positive definite with dimensions m x m. By corollary 36, there is a unique lower

triangular matrix L with positive real diagonal elements, such that AAH =

LLH. Let L in this proof be A in theorem 122 and let A is this proof be B

in theorem 122. Then by theorem 122, there exists an m x n matrix H, such

that HH(HH = Im and A = LH1 . Because L is unique, we know Ha is unique.

Since AAH is positive definite, rank(L) = m. 0

M.10 Eigenvalues of Simply Moc'fied Matri-

ces

Lemma 54 LOt {12,}.l = 1.. .1p b( tlb ,ig ,,ialius of rtal oi- coriplh.r squart

mil,'?r ." of dim, n.ison p x p. Ilt 1• I/u malru- (I,, - X) has l ag n ralhu s { I -
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t?}, = 1,... ,p. This lemma was motivated by a comment by Arnold (p. 418,

bottom) [31].

Proof. Let det(X - t'I) = 0. Consider the matrix (I - X).

det[(I - X) - r 2j] = 0

defines the eigenvalues of (I - X). Then

det[(I - X) - r 2
j] = det(-X + I - r2I)

= det[-X + (1 - r 2 )I] = 0

Since this is zero, if I change the sign I still have zero. Thus

det[X - (1 - r2)I] - 0 = det[-X + (1 - r2)I]

Comparing with det[X - t21] = 0, we note that 1 - r 2 = t2, or 72 1 -t 2.

therefore if{t,i = 1,... ,p} are the eigenvalues of X, then {a-t0,i = 1,... ,p}

are the eigenvalues of I - X. 0

Proposition 72 Let {t?},i = 1,... ,p be the eigenvalues of real or complex

square matrix X of dimension p x p. Then the matrix (Ip + X) has eigenvalues

{1 + t}, i = 1,... ,p. This lemma was motivated by a comment by Arnold (p.

418, bottom) [31].

Proof. Let det(X - t21) = 0. Consider the matrix (I + X). det[(I + X) -

r 2 1] = 0 defines the eigenvalues of (I + X). Then

det[(t + X) - r21] = det(.\ + I - r')= det[X - (T 2 - 1)11 = 0
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We! obse!rve that r2  12 W - 1 wiCh impl~ie.S T2 = 12 + 1. Therefore if I t? + I I~t

are the eigerivalues of I + X. 0

Proposition 73 Let, It?), i' = 1,i, p be (he eigenvalues of real or complex

square matrix X of dimension p x p. 'iTen the inatrix (alp + X) has eigenvalues

(a + t? 1, Z'=1, - , p. This lemmra w~as motivate.d by a comment by Arnwold (p.

4 18, bo ttomou) /3'Y1].

l~roof. L'et (l~t(Xy _ 121) = 0. Conisider the matrix (al + X).

(I(!t[((lI + X) - T 2 11 = 0

(leifirls the eigenlvaliies of ((LI + X). Theler

((et,[(aI + X) - T21]l = (1(-t(.) + aLI - 7T
2

/) = (1let[X - (r 2 
- a)/] =0

We! ob~serve! that. 7- - a = 1,2 whlich. irjjp~i(eS T2 = 12 ±+a. Iherefore if {t? + a

are the igeiivaliies of al~p + X. 0

Proposition 74 Let1 11?), i = 1 ., p b( the iqen ivalues of rcal oi' complex

.qurcintii atrix X of (ll11un.%ion 7) x p. I/u ii I/u mna/iix (uI,,+bX ) has i-zgcnv7aluf' .,

{la+ bi'1, 1 = - ,1

I/us 1c mama wa'cs rnolivlttd byj ai (0111ifi W byj A rnold (p. 4 IS, bottomn) [31].

P'roof. IAt Let. 121)~ =-7 0. ConJtside(r the ;inalri x (a/I + IhX ).

(let[(aI + bXV) r71 /1] 0
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defines the eigenvalues of (aI + bX). Then

det[(aI + bX) - r21] = det(bX + aI - r2 I)

det[bX-(72_a)I]=bPdetX _(Tb)Ip] =0

defines the eigenvalues T2 of (aI + bX) in terms of the eigenvalues t2- 2-ab

of X. Thus r?" = a + bt? are the eigenvalues of (al + bX). [

n

Proposition 75 Let X have eigenvalue decomposition E APPj. Then the
k=l

inverse of the matrix (aI + bX) is given by

(_ a + bA ) PkpP
k=b1k

Proof. By proposition 74, the eigenvalues of (aI + bX) are {a + bAk k}l

Since
n

aI + bX = (a + b•)eke 1

k=l

then

(a + bX)-l a + (a' bA ) PkPkHk=, a k"b

13
n

Theorem 128 Let X have eigenvalue decomposition E A PkPk". Then

X -I - (- )
k=l

Proof.

x = I - (I - X) = I - PAP2 - Pk
k=" Ik=!
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n

1- Z(I - A)PkP k
k=1

This result is occasionally disguised where A2 has the form !. then
ak -

1 _ak-l1

1 -
ak ak

Also, for
2 _ 1

Ak - 1 + bk

then

S bk 1k- = -lb¢ - -L+l
1 +bk b+1

is a form that appears in literature. This comes from looking at the inverse of

a matrix

n

Y= I+ Z bkPkPk = I+ B
k= 1

2)= P

Proposition 76 Let A = AH. Then tr(A2) - A!4 where the {AI}I=l are the

eigenvalues of A.

Prool. Since A = AH, A has an eigenvalue decomposition A = FA2FH

where A2 is the diagonal matrix of eigenvalues and F E U(p) is the matrix of

eigenvectors.

A2 = FA 2FHFA 2FH = FA 4FH

Therefore

Ptr(A2) = trA4 = y•A
i---I

0
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M.11 Singular Value Decomposition

Theorem 129 (Singular Value Decomposition, SVD). Let A E C•×" have

rank(A) = r. Then A can be decomposed as A = PAQH where P E U(m),

Q E U(n), and A is an rn x n matrix consisting of all zeros except for r positive

elements (A,, -', A,) on the main diagonal. Without loss of generality, assume

n >_ m. This is a widely known r"sult.

Proof. (Gratefully taken from (11. 1. Rao, pp. 42-43 [213]). Recall that the

riatrix B" = B = AA" has the eigenvalue decomposition

1 rA 1,, pill
i=

From C. It. Rao [21:3], let Q, = A7'AtlP. Recall that {Pf} are orthonormal,

which means

0, )jI 0

We then observe

QO'Qk= A-'A-1'!]'AA =Pk - A-' A!'/ ), ( ,\' ) ,

=A; 'Ar ZA2 ijkik == AjA-hk hi
z=!

''lierefore the { Q} are also ortionorinal.

With a slight rarrangement of Q," = -I P7'A, we note that A,Q"! = I," A.

We also note that given any set of orthonormal vectors, we can comp)lete that
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set to form an orthonormal basis for its space. Thus we can find {Pi}t 1- in

C m so that

i=1

This allows us to state

A IA = (PIPIll + .+ PmP )A

We substitute the relationship for {Qi}, now extended to a set of size m, to

obtain

A = PIPIHA + ... + P•PýA = AjpQH + .. + Ar prQH

where Ar+1=- A = 0.

We know {JQ}j are orthonormal. When n > m, we can extend this set

to {Qi}n to form an orthonormal basis for C". Thus P and Q are unitary

matrices where P E U(m) and Q E U(n). We can rewrite the expansion of A

into

QHJ
A, 0

A (PI,.P.,Pr+,i•+. P-) QH PAQH

Ar 0

0 ... 0 0
Qw

where P ECm'm, A E Rlm, Q eCnx. 0
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Appendix N

TRIGONOMETRY OF COMPLEX

MATRICES

This was written just for the fun of it. It was motivated by looking at eigen-

value decompositions while playing with the zonal polynomial questions, and

recalling the Cayley-Hamilton theorem that says a matrix satisfies its own

characteristic equation. This led to looking at other functions of a matrix.

The work presented here has potential application when the CS decomposi-

tion is used, such as using the matrices C and S in section 6.3.4 of Tague's

thesis [263]. Much of the early part of this chapter is a complexification of

material from the fine work by Curtis (pp. 45 if) 164]. In this case, "Curtis"

is the author's family name, not his Christian name.

N.1 Matrix Exponential and Logarithm Prop-

erties

Definition 80 Exponential of a Matrix. Let A be a complex n x n matrix and

define

eA =I+A A++A 3+..

2! 3!
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where A- = AAm-I. This series converges if each of the n2 complex number

series
1

(I)ij + (A)ij + 1.(A 2 )ij +

converges. This defines a mapping

exp: M,(C) --+ M,,(C) = GL(n, C)

This definition is from Curtis [64].

Proposition 77 For any complex n x n matrix A, the series

1 A2 1 I
2! 3!

converges. This is a complexification of Curtis' proposition 1 [64].

Proof. Let m be the largest IaijI in A. Then the element of largest mag-

nitude in the first term is 1. The element of largest magnitude in the second

term is m. The element of largest magnitude in the third term is < , The
- 2!

element of largest magnitude in the fourth term is < f
2
'

3 , and so on. Any ij

sequence is dominated by

nm 2 n 2 M.3  nk-2 M k-I

2! ' 3! (k - l)!'

Applying the ratio test to this sequence gives

nk-I ink (k- 1)! 71mk! IIk-2f kI1 k

Since m and n are fixed, the ratio goes to zero as k - oo, proving absolute

convergence. 0
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Proposition 78 If 0 is the zero matrix, then e° = I.

Proposition 79 If A is an n x n complex Hermitian matrix (A = AH), then

An is also an n x n complex Hermitian matrix.

Proof. Since A is Hermitian, then A = BHB by theorem 119. From this

we observe

A- = (BHB)n = (BHB)(BHFB) ... (BHB) = (An)H = (AH)n

0

Proposition 80 For any n x n complex Hermitian matrix A, then eA is also

an n x n complex Hermitian matrix.

Proof.

eA = I + A +IA 2+IA3+...

2! 3!

is a linear combination of n x n complex Hermitian matrices. Therefore eA

is an n x n complex Hermitian matrix. Therefore eA is an n x n complex

Hermitian matrix. 0

Lemma 55 If the matrices A and B commute, then

eA+B = cAeB

This is Curtis' proposition 2 [64].
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Proof.

1 1

P r o . CA + B I + (A + B ) + I (A + B )2 + • (A + B )3 + - -

+6~ 2 2 +2 +B+.

Note that eA+B = eB+A even if AB • BA. When AB = BA then the above

simplifies to

e =I+A+B+-A +AB+
2 2

+ A3 + 1A2B + 1 AB 2 + IB3 3+

6 2 2 6

Continuing,

eae B =(I + A + 1 A 2+ I6 +.. -. )(I + B + 1B 2 + I B 3+.)

12 6 2 6

=I + A + B +- A2 +AB+ 1 B± 2
2 2

+ A3 + IA2B+ IAB2 + I-B3+

6 2 2 6

When AB = BA then

eAeB B eB A = cA+B = eB+A

Proposition 81 cA is nonsingular. This is a complexification of corollary 1

to Curtis' proposition 2 [64].
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Proof. Let A E M,(C). A and -A commute with respect to multiplication.

By lemma 55,

0- eA-A = eAe-A

and thus

det(I) = 1 = (deteA)(dete-A)

which implies det(eA) • 0. Therefore eA is nonsingular. 0

Proposition 82 If A = -AH (A is skew-Hermitian), then eA is unitary.

This is a complexification of Curtis' proposition 3 [64].

Proof.

I = e° =eA-A -= eA+AH = eAeAH (eA)(eA*)T = (eA)(eA)H

Thus eA is unitary when A is skew-Hermitian. 10

Theorem 130 If A, B are n x n complex matrices and B is nonsingular, then

eBAB-] = BeAB-1

and

det eBAB -= det eA

This is Curtis' proposition 4 [64].

Proof. This proof is by Curtis [64].

(BAB-')n = (BAB-')(BAB-')... (BAB-) = BA"B- 1
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BA1 12 1l

eAB-I = I+ BAB-' + (BAB- )2+ 1.(BAB ) +...

=I + BAB- + I BA2B-' + I BA 3B-' +...

2! 3!

=B(I + A + A2A + +...)B-1=BeAB2!. 3

det eBAB-] = det(BeAB-') = (det B)(det eA)(det B-1) = det eA

0

Corollary 38 If A, B are n x n complex matrices and B is unitary, then

det eBABH = det eA

and

eBABH = BeABH

Proof. Substitute BH =" B 1 into the proof of theorem 130. 0

Definition 81 Let X E Mn(C). Define

111
log(X) = (X - I) - -(X - 1)2 2+ -(X - )3 (X - 1)4 +...

2 3 4

This is a complexification of a definition given by Curtis, p. 49 [64].

Proposition 83 Let X E Mn(C). Then log(X) converges when the magnitude

of the largest element of X - I is less than -1. Note: X can not be the zero

n

matrix. This is a complexification of proposition 5 of Curtis [64].
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Proof. This is the proof by Curtis [64], except that I now am using the

magnitude of complex quantities rather than just the absolute value. Let M

be the magnitude of the largest element of Y = X - I. Then

j(Y)ij, <5 M , 1(Y12)j • < M 2

--,,), n- 2M 3 1 ')j

n ) - 3  1 '- k

By the ratio test of d'Alembert,

Im = lim knM = nM
lim ki k M) Irn l~ l

The series converges when nM < 1, or equivalently when M < 1.0

Theorem 131 In Mn(C), let U be a neighborhood of I in which log is de-

fined, and let V be a neighborhood of zero such that exp(V) is contained in U.

Then (i) for A E V, logeA = A, and (ii) for X E U, elgX = X. This is a

complexification of proposition 6 of Curtis [64].

Proof. This proof is by Curtis [64], except that the matrices are now

complex valued rather than real-valued.

(i) A E V implies eA E U by hypothesis. This implies that loge A exists.

So,

log eA = (A+ 1A 2 (A 1 .)
=A 2 12 2!

+1 (A+ A 2 + .)3

+•A + I 2 A . + A.. .... 1A
- A+ [. _A2] +2 [.A 1
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=A+O±O+O+... =A
4 lAx 2) .... A3

log(X) (X - I) - I (X )2 + - )3
2 3

which implies

I2gX (X _ 1)2 +...I +11. (X-1)-(X-I)2+
+ (X - I) - _ X 2

11 2

SX- 1(X-_ 1)2+ 1 (X-_) 2 + (X-)3 I (X - I)3 + 1(X - I)3
X--•I~ ~ +x 0) + 0(X +) + X

0

Corollary 39 Let U be a neighborhood of I in Mn(C) in which log is defined.

Let X, Y E U. Let log X and log Y commute. Then

log(XY) = log X + log Y

This is a complexification of part 1 of Curtis' proposition 7 [64].

Proof. This is essentially the proof by Curtis [64] where the matrices are

now understood to be complex. eIog(xv) = XY by theorem 131. XY =

elogXeogY, also by theorem 131. Since log X and log Y commute,

e logX clog Y = Clog X +log Y
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by lemma 55. 0

Corollary 40 Let unitary X be in a neighborhood of I in Mn(C) in which log

is defined. Then log X is skew-Herinitian. This is a complexification of part 2

of Curtis' proposition 7 [64].

Proof. This is a complexification of the proof by Curtis [64]. Since X is

unitary, XHX = XXH = I. Thus X and XH commute, which implies log X

and log XH commute. Then

0 = log(I) = log(XXH) = log X + log XH = log X + (log X)H

This implies log X = -(log X)H, showing that log X is skew-Hermitian.

Remark. This remark is supplied by me. The matrix functions exp and

log are not simple generalizations of the univariate case. For example,

ddY log Y € -

even when Y-' exists. This is easy to see since Y-` is an n x n matrix, while

.4- log Y is an n2 x n2 matrix. Let us see what A� log Y is.

exp(log Y) = Y C Neighborhood(I)

log(exp X) = X C Neighborhood(O)

d log(exp X) = -x- = E,, E ' :ý 1,,2.

Treating log(exp X) as a composition of functions log o exp(X), we get

d d d T
dX (log(exp X)) = Y [ log Y][-ýXexpX] = E~
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Thus

dlog Y = EnET[En- exp X] (N.1)
dY d

when this inverse exists. 03

N.2 Matrix COS and SIN Functions

Work in this section is supplied by me.

Definition 82 Define the matrix cosine function as

C(X) = •[exp(iX) + exp(-iX)] (N.2)

and the matrix sine function as

S(X) = -[exp(iX) - exp(-iX)] (N.3)
21

Thus

exp(iX) = C(X) + iS(X) (N.4)

Note that C(O) = I and S(O) = 0. Unlike the univariate case,

-0(X) ý -S(X) (N.5)
dX

and

d S(X) #- C(X) (N.6)
dX

The derivative matrices are n2 × n2, whereas C(X) and S(X) are n x n ma-

trices.
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Proposition 84 (a)

S(A) = A- !A 3 + A-A +--
3! 5! 7!

and (b)
1 2 +1A4 16

C(A) =I- 1A +A4 -A6 "
2! 4! 6!

Proof. For part (a):

S(A) (eiA e-iA)

100 1 k )k 01• [l_ (_l)k] ik k
k= -p [(iA) (-iA E - ( A

2i 21 k=o k!

Note that

0, when k s even

2, when k is odd

Then

S(A) = iA - A3 +A + +

Y!5. 3! 5!

00 1E _ 1 (_l)k+'A 2k-1

=l (2k - 1)!

For part (b):

C(A) = l(etA + -ia) : 2 [(iA)k + (_iA)kI
2 2 ~k=O k

-- - [I • + ( -1)k] (iA )k

0, k odd

2, k even
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= 0i + (iA)2 + 1(iA)4 + (iA)6 +""

1A2+1 4 1A6

2! 4! 6!

= E (-1)ka2k
k=O •1

El

Proposition 85 Let X E Mn(C) be an n x n complex matrix, and let C(X)

and S(X) be defined as in definition 82. Then

C 2(X) + S 2(X) = I"

Proof. Note that X and -X commute under matrix multiplication, which

allows us to use lemma 55.

C 2 (X) + S 2 (X) = I [exp(iX) + exp(-iX)]1 [exp(iX) + exp(-iX)]
2 2

1 1 [x~X x(i)
+ I [exp(iX) - exp(-iX)] I [exp(iX) - exp(-?X)]

2 1,2
= 1 [exp(i2X) + 2exp(iX - iX) + exp(-i2x)]

4

I [exp(i2X) - 2exp(iX - iX) + exp(-i2x)]
4

= exp(iO) = I,

0
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Lemma 56 Let D = diag(dl, d 2 , .. " , d,,) be an n x n diagonal complex matrix.

Then

exp(d1 )

eD •

exp(dn)

Proof.

eD I+D+ 1 D 2 +1D3+

2! 3!
12 + d3""i= "

=diag{(l1++d,.+.d+3 d+ -) wherei ,' .,n}

edl

edn

0

Theorem 132 Let a be a complex scalar. Then e a = eaI.

Proof. This follows directly from lemma 56. 0

Theorem 133 Let a be a complex scalar and D = diag(di,. d, ) be an n x n

diagonal complex matrix. Then

a

ed,

eaD •.

e =D

edn

Proof. This follows directly from lemma 56. 0
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Theorem 134 Let a be a complex scalar. Then

C(aI) = [cos(a)]I

and

S(aI) = [sin(a)]I

where cos and sin (with lower case c and s) are the usual scalar trigonometric

functions.

Proof.

C(aI) = +, + e-iaI) = (eii + e-iaI)

1 l(eia + e- i a)I = [cos(a)]/
2

Similarly,

S(aI) = [sin(a)]I

Corollary 41 C(•I) = 0 and S(1I) = I.

Proof. This follows directly from theorem 134. 0

Theorem 135 Let A and B commute under multiplication and A, B E M,(C).

Then

S(A + B) = S(A)C(B) + C(A)S(B)

S(A - B) = S(A)C(B) - C(A)S(B)
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C(A + B) = C(A)C(B) - S(A)S(B)

C(A - B) = C(A)C(B) + S(A)S(B)

Proof:

S(A)C(B) + C(A)S(B)

= 21 2iiA- e-iA) 1 (eiB + e-iB) 1 (eiA + e-iA) 1 (eiB- e-iB)

I~ (eiA e iB + eiA e-iB - -jA e iB ~eiA eiB)4i*

+--4i (eieiB - etAe-i + e- iAeiB - eiAei-B)

1 (2eiAeiB 2e-iAe-iB) = 1 (eiaeiBt -iAe-iB)

Invoking lemma 55, we get

1 (i(A+B) e-i(A+B)) = S(A + B)

The other identities are proven in a similar fashion. 0

Theorem 136 If A and B commute, then S(A) and C(B) commute. That

is, if AB = BA, then

S(A)C(B) = C(B)S(A)

Proof. From theorem 135,

S(A)C(B) = 1 (eiAeiB + eiA e - i e_ -e e-iB)
4i

Now invoke eiAeiB = eiBeiA from lemma 55. This gives us

I (eiBeiA +.eiB eiA _eiBiA _ e-iBe-iA)4i
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S(eiB + -iB) 1- (e -A e-iA) = C(B)S(A)

Corollary 42 S(A) and C(A) commute.

Proof. A commutes with itself. Let B = A in theorem 136. 0

Theorem 137

(a) S(2A) = 2S(A)C(A)

(b) C(2A) = [C(A)]2 - [S(A)]2 = I - 2[S(A)] 2 = 2[C(A)]2 - I

(c) S(3A) =3S(A) - 4[S(A)]3

(d) C(3A) = 4[C(A)]3 - 3C(A)

(e) [S(A)]2 = '[I -C(2A)]

(f) [C(A)]2 = '[I + C(2A)]

Proof. The proof of these is strictly mundane, made possible by theorem

136. Note that A commutes with itself. For example, look at (c).

S(3A) = S(A + 2A) = S(A)C(2A) + C(A)S(2A)

= S(A)[C 2(A) - S2(A)] + C(A)[S(A)C(A) + C(A)S(A)]

= S(A)C 2 (A) - S3 (A) + S(A)C 2 (A) + S(A)C 2 (A)

= 3S(A)C 2(A) - S 3 (A) = 3S(A)[I - S 2(A)] - S 3(A)

= 3S(A) - 3S 3 (A) - S 3(A) = 3S(A) - 4S 3(A)

Proof of other parts follows similar mechanics. 0
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Theorem 138 If A and B commiute, then

(a) S(A) + (B) =2S[I(A +B)]C[I(A -B)]

(b) S(A) -S(B) =2C[!(A +B)]S[I( A-B)]

(c) C(A) + C(B) =2C[I(A + B)]C[I(A - B)]

(d) C(A) -C(B) =2S[I(A +B)]S[I(B -A)]

(e) S(A)C(B) = ![S(A + B) + S(A - B))

(f) C(A)S(B) = [(S(A±+B) -S(A -B)]

(g) C(A)C(B) = ~[C(A + B) + C(A - B)]

(h) S(A)S(B) = [C(A -B) -C(A +B)]
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Proof. The proof is merely tedious algebra. Commutativity is required to

invoke lemma 55.

(a) 2S[I (A + B)]C[I(A -B)]

= 2[S(!A)C(IB) + C(!A)S(IB)]

x[C(!A)C(IB) + S(!A)S(IB)l

= 2[S(!A)C(!A) C 2 ( 1B) + S 2 ( !A)S(IB)C(IB)

+C 2 ( 1A)S(!B)C(!B) + S(!A)C(!A) S 2 ( 1B)]

= 2 [(S 2( !A) + C 2( !A))S(IB)C(IB)

±(S 2( 1B) + C2 ( !B))S(!A)C(!A)]

=2[S(IB)C(IB) ± S(!A)CQ!A)]

=2S(~A)C(! A) + 2S(IB)C(IB)

=S(A) + S(B)

(b)-(d) Proof is similar to (a).

~[S(A)C(B) + C(A)S(B) + S(A)C(B) - C(A)S(B)]

= 1[2S(A)C(B)] = S(A)C(B)

(f)-(h) Proof is similar to (e).

Theoremn 139

[C(A) + iS(A)]y' = C(nA) + iS(nA)
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Proof.

[C(A) + iS(A)]n= [-Ie iA + 1 e-iA + -e -e l -iA]n
2 2 2 2

- [eia]n = einA C(=nA) + iS'(nA)

0

Theorem 140 Let X, B E Mn(C) and let B be nonsingular. Then

BC(X)B-' = C(BXB-1)

and

BS(X)B-1 = S(BXB- 1)

Proof. Invoke theorem 130. To prove the first equality, we begin

BC(A )B-' = '[Bexp(iX)B- 1 + Bexp(-iX)B-1 ]

= •[exp(iBXB- 1) + exp(-iBXB- 1)]

= c(BXB-1)

Similarly, the second equality is shown

BS(X)B-' = 2 [Bexp(iX)B-1- Bexp(-iX)B-']

- ±[exp(iBXB-') - exp(-iBXB-')]-- 21

= S(BXB-')

0

Corollary 43 Let X, B E Mn(C) and let B be unitary. Then

BC(X)BH = C(BXBH)
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and

BS(X)BH = S(BXBH)

Proof. Since B is unitary, then B-' = BH. With this substitution, the

proof follows that of theorem 140. 0

N.3 Relating Trace and Determinant

This is a particularly nice result because the trace and determinant operators

are functions of only the unordered eigenvalues of A.

Theorem 141 Let A E M,(C). Then

exp[tr(A)] = det[exp(A)J

This is taken from Curtis (p. 55) [64].

Proof. Let A be diagonalized by the similarity transformation D = BAB`-

where D is a diagonal matrix. Then

e BAB-R = BeA B-1

by theorem 130. We note

deteA = (det B)(det eA)(det B-') = det(BeAB-1)

det(eBAB-') = det CD
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Let

b,.

and

0

0

di =bi

0

0

n1

Thus D = • di and

deteD = 12I (dete d)

since the di commute. Using the definition for matrix exponential,

1

1

1

1
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which implies det e de es'. So,

n

det e' D ] e6' = exp 6:) -tr(D) = tr(BAB-1)

-exp[tr(AB-
1 B)] =exp(tr A)

Therefore

exp [t rA] , det [exp A]

when A can be diagonalized by a similarity transformation. 0
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Appendix 0

USEFUL IDENTITIES

Identities which have been useful in the development of this work are recorded

here. Most of these are common identities recorded here for convenience's sake.

There are, however, some nontrivial ones near the end of this short section.

Lack of citing a reference on the simpler identities merely indicates they are

very easy ones which I did myself and did not think important enough to find

out who else has done them. I do not claim these as new contributions.

0.1 Sums

Proposition 86

P k (p+b)(p-b+ 1)

k=b 2

Proof. This is a generalization of

n k n(n + 1)

k= 2

p p-b+1Ek=(p-b+l)(b-l)+ E k
k=b k=1

= (p-b+1)(b-2)+ I(p-b+2 )(p-b+l2)

= (p-,+ 1)[b-1 1 + (p- b +2)]

2
•(p - b- - 1)(2b - 2 + p - b + 2) = (p + b)(p - b + 1)
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0

Proposition 87

b 6 a-i i
k =ji - 1= [b(b+ 1)- (a- 1)a]

k=a i=1 j= 2

Useful special cases:

p-1
S 2i = (p- 1)p

EI 2i = p(p+ 1) - 2
i=2

p-1

Z 2i=(p-1)p-2
i=2

0

0.2 Combinatorics

Proposition 88

(2m)!
(2m-1)(2m-3)(2m-5)'-'3 -1 2

For EVEN m: {(2m - 1)(2m - 3)(2m - 5)... (m + 1)

For ~ ~ m/ EVEN m:I~n ! (2m
-- 

2 
(m!)

2  2 2 rn)

(2m - 1)(2m - 3)(2mn - 5)...-m =(2m)!,(--1!

For ODD m: - 2 m+ 
2 m!(m--)!

-- 2(mn-I)/2 (M-1l
= )
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0.3 Classical Distribution Properties

Theorem 142 Chi-Square Distribution.

The X2 distribution shows up in the evaluation of some important special

cases in the properties of the Wishart distribution, both in the complex and

real variables cases. The X2 distribution in this thesis refers to the usual

real-variables case of random variables for X2. Many texts discuss the gamma

distribution, and then point out that the X2 is merely a special case. Although

true, it is an important enough special case to have a life of its own.

There are some properties we need in this work, and they are tabulated

here. These are copied from Canavos (p. 149) [501. They can be found in

many texts. Let x - x•( 0 ). Then the following results are true.

E{x} = n

var(x) = 2n

skewness(x)=

kurtosis(x) = 3 (1 +

mgf m., (t) =(1 -2t) -n/2 for _ < t <1
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{xm} = 2mr (! + m (

E{X2} 417 (-+4) )/r(!2)

£{X2}=4k(k+1) forn=2k

E{y 2} =k(k + 1) for x = 2y and n 2k

-, n>2

z•2 - (n-2)(n-4)

var { = (n-2)2(n-4)

0.4 Functions of a Hermitian Positive Defi-

nite Matrix

Lemma 57 Let U be Hermitian positive definite. Let

1

h(U) = 1 exp[-trU-1 ]
[det U~r

Then h(U) is maximized when U = II. This is a complexification of Arnold's
n

lemma A.14 [31].

Proof. This is a complexification and expansion of Arnold's proof. Let U

be a p x p Hermitian positive definite matrix. By theorem 118, U- 1 is also

Hermitian positive definite. By theorem 115, let U-' have eigenvalues

A2=diag(,,., )
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with eigenvector matrix F. By Stewart corollary 6.5.3 [259] we know t? > 0 for

all i E [1,p]. Then by theorem 114 and theorem 113 we have

h(U) = it exp - def g(tp,.. .,t)

Now, find the (t2,.. t2) that maximizes g(t2,-., t2) over the set where t? > 0,

and then find the matrix associated with those eigenvalues.

_•igtl' ,•2 : • H 2n,-t2 =nt2(n-1) -t2-~ef

.. j2i(=-a e~ .~ _ t~
2

n e-?)

where

P
C = t2n--t > 0

j~l

because t? > 0 for all i. Continuing,

t2(nt-) t2 _ t 2 n, -2 1) t-ne-t,

e- c = -t •i I C

From this we see that

g•f(t2,... tI) =

if and only if nt- 2 - 1 = 0, which implies t? = n. Then

-- - t2' t2) a .t 1-2 " -'
t)=a(nt.2 _ I)t~net~

a(t?)2g I P',

S[(-nt4)(tne-t) + (nt7- 1) (nt (n-1)et- ? -t~ne-)] C

= [(n2 - n)t-4 - 2nt- 2 + 1] t.ne-t.c

Evaluating the second partial derivative at t? = n gives us

[1---2+1]n ne-nc=-n'1 e - <0
n
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Thus t? = n gives us a maximum. Therefore

u-, = F(ni)FH = nI

which implies U = 0I 0

Theorem 143 Let U and A be Hermitian positive definite p x p complex

matrices. Define

f(U) = [det U]-n exp[- tr(J-'1 A)]

Then f(U) is maximized when U = -!A. This is a complexification of theoremn

A.15 of Arnold [31].

Proof. This is a complexification of Arnold's proof. By theorem 120, there

exists A1/2 such that A = A1/2A1' 2. Then

f(U) = [det U]L- exp[- tr(V-' A)] = [det U]-' exp[- tr(U-' A"/ 2A'/ 2)]

= [det Unexp[-tr(AV-J U-A!)]

[det A] -n[det(A -1/2 UA- 1/2)] -n exp[- tr({ A -/2 UA- 1/2} )

= [det A]-nh(A-1 / 2UA 1/2)

where h is defined in lemma 57. Thus f(U) is maximized when

A -/2II2A-1/2 1 1I

or equivalently, when U = 1-A. 0
n "
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0.5 Properties of Unitarily Invariant Func-

tions

Lemma 58 Suppose that C is a fixed p x p complex matrix and Z is a p x p

complex random matrix. If a function

g(C) =,F{etr(CZ)}

satisfies

g(C) = ,{etr(CZ)} = 9{etr(CUHZU)} = g(UCUH)

for all p x p unitary matrices U, then

£{ZjiZtk} = gij,kj def a2 (C) blijbkl + b2 biibjk

This is Tague's complexification [264] of Olkin and Rubin lemma 1 [199]. This

lemma is used in the development of theory resulting in a beamforming example

by Tague for computing the signal-to-noise ratio.

Proof. Let U = [tJ, U2, -- , Up] be a unitary matrix. Then

p p
tr(CUHZU) =E C C'jUjZUI

t=1 j=l

Note that the order of subscripts of Cij are the opposite of Uj'ZUi. Expanding

the assumed functional form and taking derivatives, we obtain

= 2 etr(CUHZU)f(Z)(dZ)
g -Cij. kl k>O c=o
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SIf UjHZUiUfZUketr(CUHZU)f(Z)(dZ)=

This shows that
g•,,k, = g {v UHZUUHZ }

for all unitary matrices U.

Let U = I. Then

g {UjZU 3 UjHZU} S f {e£Zeje'Ze} E I ZjjZjf E f Zj, g 3,3,j

By hypothesis, g is invariant for all unitary U. Therefore, g is unchanged if we

let U2 = ej and Uj = ei. Then

g,,, = E , {EU[ZU1U /'ZU,}

- C {eZejeZe } = . {(Zj)2}

where 1 < i, j _< p. If a column of unitary U is multiplied by a complex number

with unit magnitude, then U remains unitary. If we exchange columns of

unitary U, the new matrix is unitary. By picking special cases of U, we can

show that most second order moments are zero.

Let U = I. Then

9,,,,, = E {(zI,)2}

Now, let U, = ej and Uj = ejv--C. Then

gi,,ij = E I{(Zji)2} E £ ej V---)T Zei(-~ejvCT-)TZei} =£ _Ef(Zj,)2} 0
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Similarly,

gii,ij = gii,jk = gij,ik = gij,kl - 0

The only nonzero terms are gij,ji,gii,jj, and gii,ii, 1 , ij < p.

We relate these nonzero terms by applying 01kin and Rubin's trick to

evaluate

= 0 = E { U/ZUiU 2 "ZUi} = E UiU;jU-ykU;g9cyy 6

where U~j is the complex conjugate of the complex scalar Uj. Let U = exp(CF)

where F is skew-Hermitian (which has purely imaginary diagonal terms).

When 0 < t: < 1 then U .• I + cF. Ignoring higher order terms, the main

diagonal elements of U have the form Uii = I + ja, for ai E R. Also, Uij = fij

and Uji = -fr. The equation becomes

Efigiii - cfig,jj - cfi'jgij,ji = 0

which implies

91,ii := giij + gij,ji = b, + b2

and

gij,kI = bibijbkl k+ b2bilbik

0

0.6 Some Special Definitions
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Definition 83 A function obebjnq the rule f(bZ) = b5af(Z) for all b is called

homogeneous of degree a. This is a complexification of a dcfinition given in

class by Krantz.

The next two definitions should be blamed on me.

Definition 84 A generalized even function f is a function f(Z) that obeys

the rule f(ezZ) = f(Z) for all 0 E R, where Z E Cn.

Definition 85 A generalized odd function f is a function f(Z) that obeys the

rule f(ei°Z) = ei 0f(Z) for all 0 E R, where Z E CG.

Notice that when Z is restricted to R that 0 E {nir I n E Z}, and these

definitions specialize to the usual notions of f(-x) = f(x) for even functions

and f(-x) = -f(x) for odd functions. Thus, odd functions are homogeneous

of degree 1 in ei°.

Definition 86 Two functions f, g are called algebraically independent if for

any polynomial function _ aifigji = 0 with complex coefficients aij, we must

have a0j = 0 for all i, j. This definition was taken from Lang (p. 262) [160].

0.7 Generalized Nested Operator

Definition 87 Nested Operator. Let 0 and o be operators such that

a o (bOc) = (a o b)J(a o c)
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Then the nested operator is defined by

n

A (akobk)
k=1

def [a, Cbi 0 (a 20b 2 0 {a 30b 3 0 (... a,._ 1 Obn-l o (anObn))})]

= aiO(b, o a2 )O(b, o b2 o a3 )O(b, o b2 ob3o a 4 )O. ..

O(b, o b2 0o... o bn o a,)O(b, o... o bn)

where n E N. This is an extension of the definition given by Tuma (section

8.11) [268].

Application: Polynomial. Let 0 be ordinary addition, let o be ordinary

multiplication, and let bk = x for all k. Then

A(ak + x)= a, + a2x+ a3x 2 +" anXn-1 + xn

k=1
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Appendix P

INTEGRALS

The purpose of this portion is to make this thesis easier and quicker to read

and understand, and for verifying those integrals which have been required

or closely related to the thesis work. Many of these integrals can be done by

most sophomores. However, some may require explanation. In many cases

these integrals were not in Gradshteyn and Ryzhik [94] or in Abramowitz

and Stegun [1]. The integrals are ordered according to their use of prior

results. They fall into several categories. The most interesting category has

to do with integration over groups, and those which involve zonal polynomials

and hypergeometric functions. The next most interesting grouping consists of

integrals over matrices. Finally, there are the routine tedious integrals which

are uninteresting and should only be done once in a lifetime, and hence they

are recorded so they will not have to be done again.

The integrals which are most important are the ones that define the mul-

tivariate Gamma function, the matrix Laplace transform, and those involving

hypergeometric functions of one and two matrix arguments.
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P.1 Easy Chain Rule Bookkeeping Method

These are the uninteresting integrals. I will try to make it more palatable by

introducing a bookkeeping method to reduce the work involved in doing the

chain rule.

Lemma 59 Chain Rule Evaluation. f udv = uv - f vdu.

Sometimes evaluating an integral by using the chain rule yields a long

sequence of steps. To reduce the labor (and thus the opportunity for clerical

error), a simple convention below permits efficient iteration. Given f udv, write

the uv term on the left half of a line. Follow the uv term by a vertical dashed

line, which is then followed on the right half of that line by the - f(du)v term

left in its integral form. This integral is now operated on by the chain rule with

the result on the next line. The process continues repeatedly. The solution to

the original integral is the sum of terms to the left of the dotted line.

An example of this technique is given in lemma 63, the evaluation of

J(xt + y)-n c-ZXtdt
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f u(m)v(n)

= U(,)V(n--) f u(m+l)v(n-1)

/

_u(m+l)V(n-2) + f U(m+2)V(n-2)

/

+U(m+ 2)V(n- 3 ) - f u(m+3)V(n-3)

/

__u(m+3)v(n-4)

sum is solution

P.2 Mundane Integrals

P.2.1 Exponential Integral Definition

Lemma 60 Exponential Integral. This integral is listed here for reference pur-

poses. This integral is used to express the results of one of the test distributions

for examining a disjoint combination of sample eigenvalues.

00
Ei(x) def -P.V. t-e-t dt, x > 0

This is found in Abramowitz and Stegun (p. 288) [1]. The path of integration

excludes t = 0 and the path does not cross the negative real axis. A series



871

expansion is

Ei(x)= + In(x) + E-- x >0
n=1

where 7 = 0.57721 56649 is Euler's constant. EI(x) is tabled in Abramowitz

and Stegun [1] for 1 <x < 2.

P.2.2 Integrals of Rational Functions

Proposition 89

St(xt + y)-ldt = [(xt + y,)- y ln(xt + y,)]

Proof.

J t(xt + y)-ldt f t d[ln(xt + y)]
x

-t ln(xt + y)y)d = ltl-t ln(xty)fln(xt + y)d(xt + y)

= t ln(xt + y) - l(xt + y)[ln(xt + y)- 1]
x x2

(xt xt-+ Yln(xt + y)+ xt-y

(X2 X2  X2

= -•[(xt + y) - yln(xt + y)]

ox

0

Proposition 90

tn +1 (m - - k)! n! tn+lk(xt + y)(mk) +

< dtin . -n(xt~ ++) = m-1!( + I )!X

for n < m.
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Proof.

Jtn(xt + y)- m dt

1 tn(xt + y)-(m-1 ) + 1 n1 -'(xt + y)-(m-')dt(M - 1)x (m -_ 1)xn t

- 1(1 tn(xt + y)_(mn)- 1 _tn-1(xt _y)(m_2)
(m --l (m -- 1)(m -- 2)X

n(n -- 1 r-2(xt + y)-(M-3)

(m - 1)(m - 2)(m - 3)-x-

n(n - 1)... (n- k + 2) t1_n-k+I(Xt + y)_(_,k)

(m - 1)(m - 2) ... (m - kc) xk

+ n(n-1)...(n-k+l) 1 1
(m - 1)(m -2). . (m - k)xk t +

- +1 (m k)! n! tn+l-k(xt + y)(m-k)

k-I (m-i)! (n+l-k)!Xk

Proposition 91

S t dt-= ny (1 -ln(xt+y))xt -+ y xn+1

n--11

+-- n-1 1)(n k) xn+l-k(xt + y)-(n-k) + c+ X (n-k 1)nk- t+
k=l

Proof. In proposition 90, let n = m and consider the last two terms when

k m - 1. We get

m(m -1)... [m - (m - 1) + 2] 1 tm+l-(M-_)(Xt + y)[,mm1)l
(m - 1)(m- 2)-...ra- (m- 1)x-1

m(m - 1).-. [m + 1 - (m - 1)] 1 tm-(m-1)(xt + y)-tm-(m-1))dt

(m -2)... [m - (m -1) x-1 I
- m(m -1)'2(3) 1 t 2(xt + y)-1

=(m - 1)(m - 2 •) x,-,
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+ m(m- 1 t(xt + y)1.dt
(m- 1)(m - 2) ... (1) Xmý-I

Recall proposition 89. We get

m(m- 1).-..(3) 1 2(xt + y)-i

(m - 1)(m -2)... (1) xm-i

rm(m-i)...(2) 1 [(xt + y) - y ln(xt + y)]
S(m - 1)(m - 2) ... (1) x-+'

m(m-1)-...(3) 1 t 2 (x+y) 1  mt my n(xt+y)]

(m - 1)(m -- 2)... (1) x-+-' xm-- + l

Also note:

(n - I - k)! n! n
(n- 1)! (n+ 1-k)! (n-k+1)(n-k)

Substitution into the last two terms of proposition 90 produces the result. 0

Lemma 61

m-(_l)k Ib )km-k + 1 (b)m
k=o m - k a a

Proof. Solve by brute force algebraic division with a remainder term, and

then integrate the result.

x x M-1 x m-
ax+b a a (a) +M"

k=O k=1

The result of the kth division (starting with k = 0) produces the term

with a remainder for that division being
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Division number k = m - 1 produces a remainder term with a zero power of

xand remainder (-1)" (W)'. Thus the result of the division is

-M=[- 1(--I)kl ( kXm-k-1 "4(-- )m Ix+

ax + b a [aX~k (akmkl ~) ax + b

Integrate this over all x to get the final result. El

Theorem 144 Let k and p be positive integers. Then

f Xk dx
(ax + b)d

( 1 )k+" 0 (k)(_b)m(kpim+l)(ax )k-p-m+ k < -

(l)k+1 {(k+j+)(_b)_P+ ln(ax + b)
ak Ž p-i

+ (k) (b)m i) x + )k-p-m+1}M= )a +b
mrnk-p+1

Proof. Let z = ax + b. Then x =(z - b) and dx = dz. Performing the

change of variables, we get

S)d =(-at z - b)] z-dzI(ax + b)P aI a kzd

= -Zk+ k (k) (-b)mZk-mdz

where the complicated exponent on z was chosen for the expansion to keep

the dependence on k explicit. When k > p - 1 we have a special case when



875

m = k - p + 1. We rearrange the problem to sharpen this dependence. The

rearranged problem is

I(x+ =x k+1 k (k) (-b)t m f Zk-Pmdz

The result follows from the integration. C0

P.2.3 Integrals Related to the Gamma Function

Definition 88 The g--rma. iction is defined by

00
r(z) = j tz-le-tdt

where Re(z) > 0 and z is complex.

Recall that zr(z) = r(z+1) and when n is an integer we get Ir (n + 1) = n!.

Lemma 62 Let Re(az + 1) > 0. Then

Steze-)tdt =- ,+l)r(az + i)

Proof. Perform the change of variables x = it. Then t = and dt = 1dx.

The new limits of integration are (0, co). Then

j•tzet x ) - jM _ '(1 = 1-(cvz+l)jxaze-'dx

=-(az+l) r x(az+l)-1 c-&dx = /3-(oz+l)r(az + 1)

when Re(az + 1) > 0. 0
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Theorem 145 Let n be a positive integer, and let a and b be real numbers.

Then
/btne-tdt=n -a k bb)

Si2n! exp a + b ) ni (ae sinha [- k)]
k=O k!

Proof. Apply the chain rule.

a tne-tdt = -tne-tjl + n fatn- e- t dt

= -(tf + ntn-1 + n(n - 1)tn- 2 + + n!)e-' 6

nn b n n
- e-t En!tk e- -en! E 1 b k __e an! E 1 ~ak

k n a k0b k! k'

- n! (•= [•.l [ake-a - bke-b])

The last term in brackets looks inviting because of its symmetry. It can be a

false oasis. If you go through the mathematics and let

w(k) [ -b-a+ kln()] = [( b-klnb)-(a- klna)]

then you can manipulate the last term in brackets.

ak e-a - bk e-b

= ep (a + b) (bk/ 2 { [a] k/2 e(i)-[a]fk/ 2 ei-a)

exp (-±--b) (ab)k/ 2 {exp [-a + ý In

- exp [-(a + ý In )]

2 2 b
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= 2i exp a + b) (ab)k/2 sinh[w(k)]

Then the result becomes

e-d(eak - e-bbk
k=O

i2n!exp (a + b n (ab)k/ 2 sinh[w(k)]

0

Corollary 44

tne- t dt = nr 1- e-b t~ )

Proof. In theorem 145, let a = 0. Notice that the second form of the result

is not as useful because ln(0) is undefined in the definition of w(k). 0

Corollary 45

00tn.e-tdt = n!,-a k--- .

k=O k

Proof. In theorem 145, let b = c•. 0

Corollary 46

Stn e-idt = = P(n + 1)

Remark. This merely follows the definition of F(n + 1), but we obtained it

by letting a = 0 and b = co in theorem 145. 10
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Corollary 47

wbe-adw = c(b+l)b! ( -- e (ac

k=O k!]

Proof. Let t = cw be a change of variables. Then w = 1 and dw = idt.

The limits become (0, ac).

jac (D~betjd = -(b+ 1)jac c(b+l)b! (1 -eac bI ()k)

c Cfok=0 k!

Corollary 48

o°e-•: xxdx = a•-(M+ l)m!

Proof. Let t = ax be a change of variables. Then

00 e-cx m'dx 10 m (L- &t!dt =-,-(m+') j tme-tdt

= a-(m+l) j" t(m+l)-le-tdt

where we note that Re(m + 1) = m + 1 > 0 for m > 0. By the definition of

the gamma function, we get

a-(m+l)F(m + 1) =-(m+1)m!

0

Lemma 63

(Xt + y)ne-zxtdt =n - (xt +1 + m -)nMzxtj + - (O )m+(=0 (n yf
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Proof. Apply the chain rule.

f (xt + y)nezxtdt

-(L) (x +Y y)n ezxt .+ GO) n f(xt + y)n-le-zxtdt

- (~2n(xt + y)n-lezxt + (_L) n(n - 1) f (xt + y) n-2 e-zxtdt

_ (_L) 3 n(n - 1)(xt + y) n-2 ,ex t  + (_L) 3 n(n -1)(n -2)

x f (xt + Y )n 3 ,ezxt dt

- (x) n(n - 1)(n - 2)(xt + Y)n e-x

-(_ 1 )l+1 ntezxt

To get the answer, we sum the results in the left column. We get

] (Xt + Y)n ez-Ttdt n -7 (j) + nm C-zxt

0

Proposition 92

Jxncxdx = ~~ lk1(n ~k)! xe n > 0
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Proof.

f xne-axdx

= (_•)xn oax (1)f Xnle•a•dx

_(_1)2 nxn-leax + (_)2 n(n -1) f xn-2 e-axdx

+ (--1)3n(n - a)xn2 eaz i - (-1)3n(n - 1)(n - 2)f Tn 3 e-axdx

n • (_ 1/k (_ I) k÷ ' n! n- k -ax fo •
E ((-k) X -- for n > 0
k=0

0

P.2.4 Ratio of Exponential to Algebraic Term

Proposition 93

jexp(-zxt) dt= ez Ei[-z(xt + y)]
xt +y x

Proof. Perform a change of variables. Let u = z(xt + y). Then

X

and

dt = -du
xz

Then

J(xt + y)-le-tdt = Je- + ( du = - J e

1-eZ' Ei(-u) = ez'y Ei[-z(xt + y)]x x
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The proof is more easily seen to be consistent with other references regard-

ing the exponential integral Ei(-u) by considering the definite integral

fb(xt + y)- 1 exp(-zxt)dt

The change of variables yields

[(:v)z 1 1 uz(•udu
_e/Z -eyz• Idu -ez f u-le-Udu

Jz(xa+y) U XZ X Jz(xa+y)

I -eC[y u-leudu - u-be-Udux [fz(a+y) F(x b+ y).

= ezy [- Ei[-z(xa + y)] + Ei[-z(xb + y)I
X

= eZY [Ei[-z(xb+ y)] - Ei[-z(xa + y)]I
X

Proposition 94 Let n > 0. Then

I(xt + y)-"e-ltdt

-nl (_-1)mx-m (--I-n)! (ZX)m-1C-zxt(xt +

+m=i ( n-i) ( ' + y)1- )

+(-1)-- () n - ,",!(,-)"-' e'y E.[-z(xt' + y)]
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Proof. Apply the chain rule.

f(Xt + y)-ne-zxidt

-~ ~~ ()(!) f ezzixd(xt + y)-(fl-1)

- ( -) ( _)ex~t )f 1  - (1) ( ' ) (zx) f e-zz(xt + y)-(n)d

+ (_1)2 ((-~.2)X ± (_) 2 X(-~-)

x (ZX)e-zxt(Xt + yY-(fl 2) X (ZX) 2 f e-zxt(xt + y)-(n 2 )dt

X (ZX) 2 e-zxl(Xt + y)-(fl- 3)

X(ZX)n- 2ezxt(xt +y)'l X f ezXt(xt + y)-1 dt

X(ZX)n-I (1) e-z Eif-z(xt + 0)1

Add the contents of the left column to obtain the result. 0

P.2.5 Product of Rational Term and Exponential
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Theorem 146

X +e-•xdx

= (-1) I( n eb/a•ln(ax + b)
aa

oo nm-1 k Cm  Xl+_-k+ ,_., : ( - l1 m + k l ( b n ~ -

m=o k=O a a nm! (n + m - k)

Proof.

I Xn f-d Xn 00 (-cX)M dx

fax b m- E M!.
00 (_c)M f n+rm

1 f! ax + b dx
m=O

Apply lemma 61.

0 (-rEo, (-1)r+m- kl b'k k+m-k

Ia (a (n+m-k)M= *- L -=0

+(-1)n+ml (,)n+m ln(ax + b)]

The k factor in the first term prevents us from getting an exponential

extracted. However, look at the second term.

E l-)(I~~i(b )-+m I~x+bO(1 (b )nf ln(an +b)

S- c.E(-)-
a= m !=O

= (-1)na ()exp (-') In(ax + b)

The final result is the sum of the terms. Exchanging the order of summation

with corresponding adjustment of limits did not simplify the result. 0
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Theorem 147
Sxk _

I e Cxdx
(ax +b)P e

ek (-b) 1 (C)p+m-k- C

- (~)e~ (-b)m  Ei (-(ax + b))
a I(p+m-k-1)! - E a

p+m-k-1 (p+r -k-i-n)! (c\n-I -

- E (e~ .k-1!k)e(ax+b) (ax + b)(Pmk)n=1 (p + m -- k - .)

Proof. Perform the change of variables z = ax + b. Then x =(z - b) and

dx = !dz. The integral becomes

(z) k+l e az k
= eZ feb z- - (-b)Mzk-mndz

m=0

=( k+1 bc k -cz -(p+r-)d
= e- (-b).m fe-az--k)dz

S.. .-" i i i i i i i i M =0
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Concentrate on this integral.

f eý -~(p+mkd

11 - zZ(p+m-kl ~z(~ k-) + (P+m k-1) a~

x f zZ-(p+m-k1)dz

2-((p+m-k--1)I(p+mW-k--2)) < (p+m-k-1)(P+mW--k-i)-)

x ~ Z-(p+m-k-2) X (ý2)2 f e!zz-(p+m-k 2)d

-(~--) (pmkn ((p+m-k-1)1 (p+m-k-n))
n

x .j)n e a z,(p+mn-k-n) X (ý)n f e-ýzZ-(p+m-kn~d

-((p+m-lk-1)!) X + (p+m-k-p)! (aPm--

X~-- (.E)p+m-k-2 -e~ xe-lzz-ldz

Concentrate on the integral f e--zz-1dz. Perform the change of variables w=

ýEz. Thus z = 1wand dz = adw. The integral is

a Cw C

Consider the definite integral f. e-"wwldw. It equals

00 e-ww-dw - F e-w'-dw

-- Ei(-u) + Ei(-t)) = Ei(-w)Ivu
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Thus

Je dz = Ei -

Substitute into the expansion of

J e-z-(p+m-k)dz

to get

I e-z-(p+m-k)dz

1(__) ()p+Mk Ei (-ýz)

rp~7k-I (p+m-k-i-n)! (21 e z-~(P+m-kn)

_nl(p+m-k-i)! \a

The original integral is found by substituting z = ax + b into

()k+1 eb k bm
e , Ei__0(-b)m X

-.. ,p+m-k-I (p+m-k-l-n)! (f)n-i e }zZ_(P+m-k-n)

P.2.6 Generalized Even and Odd Functions

Proposition 95 Let f (z) be a generalized even function for complex z. Then

J f(z)dz = 27rI f (r)rdr

Proof.

J f(z)dz= f (reie)rdrdO
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by changing variables to polar coordinates. This equals f f(r)rdrdO since

f(reie) = f(r) for all 0. Therefore

J f(z)dz = 2r jf (r)rdr

0

Proposition 96 Let f(z) be a generalized even functional for z E C". Then

f f(z)dz =(27r)- f f(r)rdr

where r E Rn and r = rjr 2 ." rn.

Proof.

J f(z)dz = f (r e'i°',. . , rn ei° ) r, ... rdr, ... drndO, ... dOn

Note that each zi is undergoing a change of variables to (ri, Oi) rather than

the usual change to pure polar coordinates where there is a single true radial

component. We can do this since each of the zi are functionally independent.

Since f(reie) = f(r) for all 0, we get

I f(ri,'" -, rn) rl'"..rdrl"". drndOl'"..dOn

Since f is a generalized even function, this integral equals

(27r)n I f(ri,. .. ,r )ri ... rdrl ... drn = (21r)n I f(r_)rdr

0
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Proposition 97 Let f(z) be a generalized odd function for complex z. Then

ff(z)dz = 0.

Proof.

J f(z)dz= f (rei6)rdrdO

by changing variables to polar coordinates where -r < 0 < r.

If f(re 6 )rdrd0 = f e'f (r)rdrd0 = (J CeOd0) (J f(r)rdr)

Since f is a generalized odd function, f et°dO = 0. 0

Proposition 98 Let f (z) be a generalized odd function for z E Cn. Then

ff(z)dz= 0.

Proof.

J f(z)dz = Jf(riel"l,...,rn ei'n)rl . rndr, . drnd01 .. ~

= (Ie"" A ) ... (IeiOndOn) Jf(ri, - rn)rl ... rndr, . .

Note that f ei~kd~k = 0 for each k E (I,n]. 0

P.2.7 Exponentials

Lemma 64

e-Itl2dt = 7r
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Proof.

f e-t 2 dt= J -+dtndt

00 (L (ft2 (0 et~dtI) = =

Lemma 65

+00 t2(a.i)+ t2  = r(a i + 1), Re(a - i + 1) > 0

Proof. Perform the change of variables y = t2, which implies dy = 2tdt.

Then

+00 t2(a-i)+le-t2d= " j t2(a-i)e-t 22tdt

2 j [t2](a_ dt 2  1 jd
From the definition of the gamma function, we know this is

y(a-i+l)-e -Ydy -= I(a - i + 1), Re(a - i + 1) > 0
2 J 2

0

Proposition 99

Ce--IItI2dt = air

Proof.

C e - - dt = 1R2 C•-ali • It rdtd
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Let y = a-1 /2t, which implies dy = a-1/ 2dt. Then

JC e-' dt = (a + f -dYR) (al/2 e- dyl)

- al/2V/a1/2V/7 = air

0

Proposition 100

f+00 t2a+le--b't
2dt = 2 b+lr(a + 1), Re(a + 1) > 0

Proof. Let u = b- t 2 , which implies du = 2b-'tdt and t2 = bu. Then

j+00 t2a+l,-b-t 2  = b + 0 t2aeb-lt 2 2b-,tdt

= 1bj'(bU)aeudtL Iba+1 00Ua e-udu
22 -- 0J

We use the definition of the gamma function to lead us to

+00 t2a+ b' 2 dt ba+ (a+l)-l e-du

2 Jo

b +b+lr(a+ 1), Re(a+ 1) >0
2

0

Proposition 101

CX2 dx = a r 0
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Proof. Let I = fo' e-c- 2dx where a E C and x E R.. Then

12 = (j~~~~z~ 2dx) 0 e2dy)=j j e(z+)dd

Let x = rcosO andy = rsinO. Then x2 +y 2 = r 2 and dx dy = r dr dO. This

leads to

P2 = j-_, 2 rdrdO =_ e e_ 2 rdr0 ~ 2

S•0•71. o-rr2 100

= e--"2 (-2cr)dr - 4-e o
4aco 4a 0

=lim - 1r(4
S1- 4a

Therefore

I= eX2dx = 1!7rýaF 0
= 20a

This particular change of variables of solving for the square of the integral

is one I have seen applied only to this particular example.

Proposition 102

e~dx = Ia #0

This is a modification of integral 3.321.3 of Gradshteyn and Ryshik [94].

Proof. Consider the following integral. I = f+Z e -a 2dx for a E C and

x E R. Then

12= (• ~e-ac2dx) (Jo e-•2 dv) = -+ 1- -a(X2+Y2)dxdy

dx)z ro' e-lmdy _ +l Il i iII
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Perform the change of variables x = r cos 0 and y = r sin 0. Then x 2 + y2 = r 2

and dxdy = rdrdO. This implies

12 = 4 j e-_T2rdrdO = 4 -r2e-rdr

Note that

de-,r2 = e-,r 2 (-2ar)dr

Then

12= -- -- - 2 (-2ar)dr = a e-

= lim -(e I b )lim 7 (-b 2 
-

lion a• 0 b--oo a

Since a is complex, let a = f3 + i7. Then

lim &-ab
2 = limCOP e- b -~b

2 I

• ~ o jI~ b-.oo e13b 1=0
<5 lim e-fln ei• I1 = lim le-n,21. 1=0

b-- b---•oo

Therefore

12 = r(0 - 1) =
a a

This implies

fora•a #. 0

Proposition 103 Let

a! a(a- 1)(a - 2)(a - 3).-.
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where a is not necessarily an integer. Then
Um a! M! mtr-k[|•ul~~

U•(1- u)adu = - E Ia m , -rn~k -

f k=O (a+1+k)! (rn-k).k=O

- (1oU)a+l _ o I (rk)um-k(1 - u)k]

Note that

(M) UmkA:(I - u )k

is the probability of k failures in m trials when 0 < u < 1, where u is the

probability of success on one trial.

Proof.

f um (1 u)a•du

= -(a. )

x ftum(-1)(a + 1)(1 - u)adu =

( ' s)f umd(l - ,) a+l.

index summing column ... expansion column

{0} = - (a-1) un(1 - u)a+l + +m1 - fur-l(1 _u)a+ldu

{1} U -•0( - u)a+2 + (a+i)(a+:92
(a+l)(a+ 2)u

x f um- 2 (1 - U)a+2 du

{ ( M(-++-) x + ( mn(m-)(m-2) ) X
(a+l)(a+2)(a+

3
) f (a+l)(a+2)(a+

3
)d121

X (U--2(1 - u)a+3) × f u"M-3(1 _ u)a+3 du
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(a! M! X + a! m! X

1k) \(a+l+k)! (m-k)!) _(a++k)! (mr-k-!)

x (Um-k(l - U)a+l+k) x f Um-k-l(1 - U)a+l+kddu

a1 a!,! u(1 - U'a+m + f(l - U)V+mdu

J (a+m)! (a+m).

am! -G -u)a+m+l
{m} (a+m+l)!

The sum of terms on the left side of the table is

fm~l _ ,)a a! M! umnk( - u)a+l+k

k=- (a + 1 + k)!(r - k)!U

(1 - E)a+I m (a + 1)!k! m! U)a+l+k
(a -+. 1) k (a +1 I -+t k)! T! (m A- ])!uek(

0_( - Ua M (7n) ziukI_1)k(a+1):o (-,+),ok1

0

P.3 Integrals with Hypergeometric Function

of Matrix Arguments and Zonal Polyno-

mials

Definition 89 Let z be a complex number, and let

[a]k def a(a+l)...(a+k- 1)
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be Pockhammer's symbol. Then the generalized hypergeometric function (or

series) of scalar argument z is

' a l .[ap],, Z
pFq(al,..,a1,;bi,...,bq;z) d k=f o [bilk [bq]k k!

This is Muirhead's definition 1.3.1 [187]. This definition is an important build-

ing block for the material dealing with zonal polynomials.

Notes. The sets of numbers {ai}l and {bj}q are complex numbers. The

{bj3} cannot be zero or a negative integer. If any of the {ai}l is zero or a

negative integer, the series is finite. If p < q and Izi < oo, the series converges.

If p = q + 1, the series converges if IzI < 1 and diverges if IzI > 1. If p > q + 1,

the series diverges if z •- 0.

Definition 90 Let S be the set of all n x n nonsingular Hermitian matrices,

S = {X = XH, X nonsingular}. Let X E S. Let p and q be nonnegative

integers. Let a,,. " , ,ap,i* ',flq be complex numbers such that -%j +(k- 1)

is not a nonnegative integer for 1 < j < q and 1 < k < n. Let

[alk=a(a+ l)...(a+k-1)

which is Pockhammer's symbol. Lht Z7,(X) be the zonal polynomial of sig-

nature m. Define the hypergeometric function of single matrix argument X
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by

,,f (al, ap. ,,;01, ,..., #q; X)

Y:]r~a~ Zm(X)

d=O ImIn=d 
d

There are some important special cases worth mentioning.

oFo(X) = etr(X) = Z M(X)d! -" d!

d=O ImI=d d=O

1Fo(a; X) = [det(I - X)J-0

Note that pFq(X) = pFq(A 2 ) where A2 is the diagonal matrix of eigenvalues of

X. This is Gross and Richard's definition 6.1 [96]. It is very important in the

work on zonal polynomials of matrix argument.

Definition 91 Let S be the set of all n x n nonsingular Hermitian matrices,

S = {X = XH, X nonsingular}. Let X, Y E S. Let p and q be nonnegative

integers. Let a,," " , ap, 1,'" -, q be complex numbers such that -3 + (k - 1)

is not a nonnegative integer for 1 < j < q and 1 < k < n. Let

[a]k= a(a + 1)... (a + k- 1)

be Pockhammer's symbol. Let Z,,(X) be the zonal polynomial of signature m.

Define the hypergeometric function of two matrix arguments (X, Y) by

,F,(a,,.- --, ap; 01. , #q; X, Y)

= E E [,ajj,.....t[aP,, ýKM z -(t.)
d=O ImIl=d Zm(X)
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This is a complexification of Muirhead's definition 7.3.2 [187], and it is Gross

and Richard's equation 4.2 [97].

Theorem 148 Let X, Y E S where S is the set of all nonsingular n x n

Hermitian matrices. Let U(n) be the set of all n x n unitary matrices. Let

(dU) be the normalized Haar measure on U(n). Then

fU(n) pFq(aa, ... , ap; bi, " " , bq; XUHYU)(dU)

-" pF(al, ". , a.; b, " " -, b,; X, Y)

This is a complexification and slight modification of Muirhead's theorem 7.3.3

[187], and it is Gross and Richards' equation 4.3 [97].

Proof.

fu(n) pFq(al, .- - , ap; bl, ",bq; XuHyU)(dU)

00

fU(.) : [a]m , ... [ap 1m Zm(XUHYU)(dU)

d=0 ImI=d

Applying Gross and Richards' proposition 5.5 [96], we get

Zo m•]...,], a n1Zm(X zm(YF r [ail,,,".ipl-n-k dZ-(X.)Z-

d=O jmd=d d! d!Zm(In

0F(a,,...,; #I, ,/q; X, Y)

0
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Proposition 104 . Let z E C. Then

r ( I n) z Co•Os i on

r(I)r[½(ni-)] f• e O ]-[sin 2 dO

4O Ok OF1 (0n; 1Z2)

This is a complexification of Muirhead's lemma 1.3.2 [187].

Proof. This is Muirhead's [187] proof with some steps filled in. By defini-

tion of the exponential function,

ez cos _ 1(zCos

This converges for all IzI < oo. Then by Fubini [230], since the series converges,

we can interchange the sum and integral. Thus

ezcoso[sinOn- 2 dO = Z: j.cosO0k[sinOn-2 dO
fo ~ k=O k

Observe that [sin O]n2- is an even function about 1 on the interval (0, ir). When

is odd, then [cos 0]k is an odd function about ! on the interval (0, ir). When

k is even, then [cos 0]k is even. Thus

j[COS 0k[sin01n-2 2dfo/2 [cosO k[sinOl-2dO, k even

0, k odd

Thus, if we let 2m = k for even k, then

Jo ezC°s0[sinO]n-2dO= 0 z 2m 2 f/2 OS2msn-2

S(2m)----

~ * • m m M = O
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Perform a change of variables. Let x = sin 20. Then

cos 20 = 1 - X

and

dx = 2 sin 0 cos 0 dO

which implies
I 1 /

dO = -x/2(l - x)-11 2dx
2

The limits are changed from 0 E (0, f) to x E (0, 1). Then

2gf1 2 [cos 91m [sin 0]n- 2d0

= 2 f(1 - X)_X(n- 2 )/21 -i/2(_ -

Merely switching notation from m back to k (but not doing a change of vari-

ables), this integral is

j - X)k-x(n-3)/2dx

We rewrite the exponents to place this integral into the form of the definition

for the beta function, as given in Abramowitz and Stegun equation 6.2.1 [1].

foi (1 - x)(k+½)-i x(2)-ldx

def B(-,k + 1) _ r(•+k)

which is a commonly used identity for the beta function. The beta function is

an important function in theoretical statistics.
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With these changes, we now have

j ez cos a sin 0]n-'d0 2OFf9Fk
(2k)! F + k)

k=Or(12

Notes.

F(k+!)- (k_!1-1_-_)--...
r (1) ( - I n -2--

(k+n _ 1)( 2) .. k+n ) ()

F(1)

Also note that

r (k +-• (k- ý') (k - ý) (k- 2)2 ) ... (12) r (12)
(-) (2k)! (2k)(2k- 1)(2k- 2)...2. .F(1)

(2y) (2k-3) (2k5)... () F (-)

(2k)(2k- 1)(2k- 2)..-2.1-r (1 )

'(2k -1)(2k -3)(2k -5)'"l'. (1)r-0
2k(2k-1)(2k-3)(2k-5)...1.r())k! 4kk!

Putting everything together,
r(n) Z Co e 0 O°• Za [si

00 2

i(½)(I€ fezo8GsioP-•do = Z z2k I
k=0 (2)k4(k:

Notice in the argument of pFq(al, ",ap;bi,' ",bq;y) that since p = 0 then

there are no parameters {al,' .. ,ap}. We have only b, = !I and y = Iz 2. We

write oFI(bl; y) since we have no {ai}. So, the lemma is proven.

For additional connections with the beta function, see Herz (p. 480, bot-

tom) [1061. 11
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Theorem 149 Let aj, bj, c, z E C. Then

foll e-zttc-IpFq(al,' ., ,p; bi,. " bq; kt)dt

= F(c)z-cp+lFq(al,. .,a, c; bi,..., bq; kz-')

which holds for

{p < q, Re(c) > 0, Re(z) > 0}

and

{p = q, Re(c) > 0, Re(z) > Re(k)}

This is Muirhead's lemma 1.3.3 [187], stated without proof.

Proof. The proof is straight forward with the following observations which

come from the definition of the gamma function.

J0t(m+c)-e-tdt = z-(m+j)zm+c o t(m+c)-le-ztdt = z-(m+c)P(m+c) (P.1)

r(m +c) = (m +c- 1)r(m +c- 1) =... (P.2)

- (m + c- 1)(m +c- 2)... (c + 1)cr(c) = (c)mr(c)

Now, substitute the definition of pFq into our problem.

fO, e zt Cprq(aj,,...,ap;bj,,...,bq;kt)dt

rt0000 f -zttClI Z a m 1 -(ki )mdt

M=O 1]fLIqmm
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Switching the order of summing and integration is allowed since the sum con-

verges. This gives us

[a,]r. [ap]m km- e-ztt(m+c)-1dt

M=0 Pd.n f0JlrW! O

E [allm ... [ap]m (kzl)m zr(m + c)

where we used our first observation, equation P.1, which leads us to

M=0 
M

= F(c)z-cp+,Fq(al,...,ap, c; b,... ,bq; kz-')

P.4 Integrals with Complex Multivariate Gamma

Function

Definition 92 Complex Multivariate Gamma Function, CFm(a).

m

Crm(a) def 7rm(m-l)/2IHp(a-i+ 1)
t=1

= 7r")1(;-C/2I'(a)I'(a - 1)... [(a - m + 1)

Sim(m-l)/2 I1 r(a - m + i)

where Re(a - m + 1) > 0. This is a complexification of Muirhead's theorem

2.1.12 [187]. It is James equation 83 [120]. This is Ip(a) in Patil (p. 7) [205].
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Discussion. The gamma function is defined by

r(z) = tz-'e-tdt, Re(z) > 0

where z is complex. Recall the properties of the univariate F(z).

r(n + 1) = n!

F(z + 1)= zr(z)

Definition 93 The real multivariate gamma function is defined to be

rm(a) - ,.m(m-')/4 r rla - (i - 1)]

where Re[a - 1(m - 1)] > 0. This is Muirhead theorem 2.1.12.

This function appears in the denominator of the real Wishart distribution

density function, Wp(n, E) where m = p and a = 1. Frm(a) shows up in

integrals that involve zonal polynomials. It also shows up in the cumulative

distribution function and expected moments of the Type I Multivariate Beta

distribution.

CF.(a) appears in the denominator of the complex Wishart distribution

CWp(n, E) density function where rm = p and a = n.
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Lemma 66

fAH=A>O e- trA Idet Aj- (dA)

7rm(m-l)/2 ri F(a - i + 1) = crm(a)
i=1

This is Muirhead's definition 2.1.10 [187] and James' equation (83) [120].

Herz [106] identifies Crp(m) as the generalization to matrix variables of the

Eulerian integral of the second kind.

Proof. This proof draws from Srivastava's derivation for the standard com-

plex Wishart distribution CWp(n, I). We begin with Srivastava's main result,

his equation 4 (p. 314) [256],

P(B) = C12P Idet BIm-p f(B)

where BH = B > 0, and C1 is a constant. Since P(B) is a density, it integrates

to 1.

1 = IBHB>o P(B)(dB) = cH2-P Idet B m1' f(B)(dB)

Choose f(B) = 7-mope-trB as we did in Srivastava's derivation of the den-

sity function for the complex Wishart distribution (see theorem 67). In that

derivation, C1 was evaluated to be

C , 2 P TIP'P

7rplp-lH/2 1(m - i ± 1)
i=1
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Substituting into our integral, we obtain

2PirPm2-Prr-mP J B -trB Idet BI -P (dB)

.p(p-1)/2 l[i r(m - i + 1)
i= 1

Dividing both sides by the constant in front of the integral, we get

P

JC -trBH det B m-P (dB) == rp(p-1)/2 1j F(m - I + 1) = CLp(m)
fH=B>0 =

Theorem 150 Let E = EH and A = AH be m x m complex matrices where E

and A are positive definite. Then the matrix Laplace transform of (det A)a-m

with respect to E is

fA>o etr(-r 1- A)(det A)a-mr(dA)

= (det E)aCFm(a) = LE-i I{(det A)a--}

This is a complexification of Muirhead theorem 2.1. 11. This is also Herz equa-

tion (1.1) [106].

Proof. This is a complexification of Muirhead's proof. By theorem 119, we

can decompose E into E = BBnH. By convention we use the symbol E1 for B

and call it the square root of E. Thus for E = E½ and E-1 =-Y--2-

Also, recall theorem 38 says that the Jacobian J(A -- V) of the transformation
K V VH

A E VE 2 where V = is given by

Idet E½m = (det F)m
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With these preliminaries, perform the change of variables in our integral.

fA>O etr(-E-'A)(det A)a-r(dA)

-- fv>0 otr ( -' ) (det (det E)' (dV)

=LO>oetr (-E2r-'Ir- V) (det W)a-m (det (det E)' (dV)

= I etr (-V) (det V)- m (dV) (det E)a

From lemma 66 we recognize the integral as the complex multivariate gamma

function, giving us

(det E)aCFm (a)

which completes the proof. 0

Note. If you normalize the integral by (det E)aCFm(a), then the integrand

is a density function

(det A)a-- etr(-E-' A)
(det E)aCFm,(a)

This is the density function for the complex Wishart distribution CWm(a, E).

C

Proposition 105

cPxP [det(EH E)]I-e-tr(E"E)(dE) = 7rp(a)

where E E Mp(C) and E is unstructured. This lemma was motivated by the

proof of theorem 7.
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Proof.

fcp..[det(E HE)]a-pe- tr(EHE)(dE)

= rp2 fcpxp'iet(EHE)]a-pr-p2 C-tr(EHE)(dE)

We recognize

7r-P e tr(EHE)(dE)

as a probability density function for the complex matrix normal distribution

CN•p,(0, I, I). Then the integral is the expected value of

[det(E HE)]ja-p

If E ,- CNpp(0, I, I), then G = EHE has the complex Wishart distribution

CWp(p, I). By theorem 79, we know

E{[det(G)]jap} = CF(a)
crp(p)

Thus

fc ip[det(tE E)]•-P etr[-EH E(dE)

rp 2el{[det(G)]--P} = 7rp2 E(2)
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Appendix Q

NOTATION

Q.1 Names of Variables

Sometimes the choice between Latin or Greek letters for a special variable

is governed by broad consensus within a scientific community and this will

override otherwise stated conventions. Such exceptions are noted in the next

section.

Matrix: single upper case Latin or Greek letters such as

A, z, r, E), A, E, E, -

Vector: usually single lower case Latin or sometimes Greek letters such as

a, z,,3, 0, W, P

Scalar: usually lower case Greek or sometimes Latin letters such as

a, vr, b, es, a, b, c, d

Deterministic variables: usually chosen from early in the alphabet.

Random variables: usually chosen from late in the alphabet.

Distribution parameters: usually Greek letters.
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Q.2 Special Notation

Special meanings are attached to the following symbols. This reservation is

sometimes violated due to a paucity of available symbols.

£ always is the expected value operator.

/= I' when i is not an index. The letter j will not be used for

vi§]-. I decided to use i since i is not current.

C identifies a distribution or function as the complex variables version of

the appended symbol. By itself, or with a superscript, it refers to the set of

complex numbers or the product space of complex numbers.

AH is the Hermitian transpose of the matrix (or vector) A. The Hermitian

transpose is the transpose of the complex conjugate of the matrix (or vector).

Note that when applied to a scalar, this is merely the complex conjugate.

AT is the transpose of the matrix (or vector) A.

or2 is reserved for the scalar variance parameter of a distribution.

t5 is used as a noncentrality parameter for the complex Wishart distribution,

which is a matrix.

E is reserved for the matrix covariance parameter of a distribution. For

the complex matrix normal distribution, this is the covariance between col-

umn vectors. Some authors call this the variance-covariance matrix or the

dispersion matrix.

E is reserved for the row covariance matrix parameter for the complex
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matrix normal distribution.

pi is reserved for the mean value parameter of a distribution.

A always refers to a singular value.

A2 always refers to an eigenvalue.

A always refers to the rectangular matrix having the non-zero singular

values on its main diagonal.

A2 alwa.rs refers to the square matrix having the non-zero eigenvalues on

its main diagonal.

I almost always refers to a sample singular value. Sometimes I is an integer

index.

12 always refers to a sample eigenvalue.

L almost always refers to the rectangular matrix having the non-zero sam-

ple singular values on its main diagonal.

L2 always refers to the square matrix having the non-zero sample eigenval-

ues on its main diagonal.

W almost always refers to a Wishart matrix. Other matrices may also be

Wishart matrices.

(P is often reserved for use as a characteristic function of a distribution.

A(A) is a diagonal matrix consisting of the elements on the diagonal of

matrix A.

IXI}nI means the sequenceX Xr1, 2,. X.
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operator.

(dZ) is a differential form of the elements of Z, which possibly can be a

matrix. This notation is used in connection with probability density functions

and is a shorthand notation for the absolute value of the product of the element

differentials, such as

dzjjdz12 •.. dzpdz21 "" dz. p ... dznp

Equivalently, this is

I ,zAdz, 2 ... AdziAd,• 2A ,...Adz 2 PA... Adzp I
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Q.3 Selected Abbreviations

IEEE Institute of Electrical and Electronics Engineers

Institute of Radio Engineers, which later became
IRE jIEEE (PGIT Vol.1, February 1953)

JASA Journal of the Acoustical Society of America (Vol.1, October 1929)

JASA Journal of the American Statistical Association (Vol.1, 1888/1889)

MLE Maximum Likelihood Estimate

RKHS Reproducing Kernel Hilbert Space

Society of Industrial and Applied Mathematics

SIAM Note : Journal of the SIAM later named SIAM Journal on

Applied Mathematics

UMVU Uniformly Minimum Variance Unbiased estimate

Q.4 Reference Author Names

The name of an author of a reference used in direct support of this research

is printed with this type style in the bibliography to distinguish that reference

from those used only for presentation of background and history. Prior to now,

there was no canonical way of efficiently making this discrimination.
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Q.5 Taxonomy of Logic

An attempt has been made to conform to Solow's taxonomy of statements

of formal logic [252] (p. 37). His classifications are defined below. This

historical taxonomy is not uniformly implemented. Exceptions were made

where I judged a proposition in the context of other similar propositions. Any

hierarchical taxonomy will fail because we have a multidimensional lattice of

logic.

1. Proposition: A statement of interest that you are trying to prove.

2. Theorem: (Subjectively) extremely important propositions.

3. Lemma: Proposition used as a step in proving a theorems.

4. Corollary: Proposition whose veracity follows immediately from a theo-

rem.

5. Axiom: Statement accepted without proof.
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Curtis Irvin Caldwell was born on 04 March 1947 in Columbus, Ohio,
United States of America. His father, Col. Elmer Irvin Caldwell, was a
career U.S. Army soldier who served during World War II in North Africa,
Italy, and France, and also in wars in Korea, and Viet Nam. As an Army
dependent, Curtis lived for over a year in Japan, and in Germany for over
three years beginning shortly after the Hungarian Revolution, and during the
Czechoslovakian Uprising and the Second Berlin Crisis. It was during these
years that he developed a deep sense of appreciation for the value of freedom
that not everyone in the world enjoyed. From his mother, May Alice Wing
Caldwell of Worthington, Ohio, Curtis learned that possession of knowledge
and power incurs the obligation of its stewardship for the benefit of others.
From his brother, Harold Earnest Caldwell, Curtis learned to love inquiry and
analytical thought.

Curtis Caldwell attended grammar school in Germany, and Francis C.
Hammond High School in Alexandria, Virginia, USA. He completed a B.S.
in Computer Science at the University of South Carolina in 1972 under Dr.
William Hines Linder, and an M.A. in Mathematical Sciences with a dual
concentration in Statistics and Computer Science from University of North
Florida under Drs. William J. Wilson and Yap Siong Chua. It was there that
Curtis developed a love for seeing other people learn.

In addition to his interests in underwater acoustics and signal processing,
Curtis has interests in Christian systematic theology and citizenship. He
counts it a privilege to serve a nation of free people under God.

He is married to Susan Marion Belcher Caldwell, the daughter of Annie
Lou Belcher and Jack Belcher, a liberator of the Nardheim Concentration
Camp of World War II. His son is Joshua Benjamin Lee Caldwell, named for
the spy sent in to the Promised Land who reported that God's promise is
good, the favorite son, and the patriot-gentleman-soldier Robert E. Lee.



911

1"J will always refer to the magnitude. For z E C and z = xei' for x, 0 E R,

then Izi = x. '1. will not be used for determinant.

det A will always refer to the determinant of a matrix.

tr A is the trace of a matrix, which is the sum of all the elements on the

major diagonal.

etr A = exp(tr(A))

exp A is the exponential function, which usually refers to the scalar function

ez. It has also been defined for a matrix argument A, in which case eA is a

matrix.

0 is the zero matrix. When a matrix of all zero entries multiplies another

matrix, the result is still a matrix of all zero entries, with appropriate di-

mensions. Rather than using a different notation for each null matrix, I have

simply used 0 where the dimensions are assumed to be correct. Thus, I have

also dispensed with the need for 0T as the transpose of the null matrix.

diag(A) is an ordered n-tuple of elements of the main diagonal of the

n x n matrix A. The context may determine if this n-tuple is a row vector

or a column vector of n elements.

diag(bl, • • -, bn) is an n x n diagonal matrix with (bh, • • , b,,) as the elements

on the diagonal.

A is (1) usually reserved for the exterior product operator (wedge product)

used with differential forms and (2) sometimes reserved for the nested sum


